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The compensation identity states that the expected I-divergence1 from a
random distribution to a fixed distribution equals the expected I-divergence from
the random distribution to its centroid plus the I-divergence from the centroid
distribution to the fixed distribution. The reverse compensation identity has the
fixed and random distributions in the other order and uses a differently-defined
centroid; it states that the expected I-divergence from a fixed distribution to
a random distribution equals the expected I-divergence from a centroid to the
random distribution plus the I-divergence from the fixed distribution to that
centroid. These two identities are information-theoretic analogues of the bias-
variance decomposition, and as such they provide decompositions that can be
enlightening when analyzing the risk of density estimators.

In Section 1, we formally define the compensation identities and explain how
they decompose the I-divergence risk of density estimators. Next, Section 2 de-
scribes variational Bayesian estimators which we will later use to demonstrate
the decompositions. Incidentally, the mean field algorithm used in variational
Bayesian procedures can be easily understood in light of one of the compen-
sation identities, an observation that we will highlight in our discussion. In
Section 3, the reverse compensation decomposition is worked out for a variety
of Gaussian location estimators, and their bias-like and variance-like terms are
compared. Finally, Section 4 uses the context of Gaussian mixture estimation
to demonstrate how simulations can be used to understand the compensation
decomposition when the quantities involved are analytically intractable.

1 The compensation identities

Theorem 1.1, called the compensation identity by [Topsøe, 2001, Thm 9.1],
conveniently decomposes the expected I-divergence from a random probability
measure to a fixed probability measure.2

Theorem 1.1 (The compensation identity). Let {qx : x ∈ X} be a family
of probability densities with respect to a σ-finite measure µ, and suppose that

1I divergence stands for information divergence; it is more commonly known as Kullback
divergence or relative entropy.

2In Theorem 1.1 and throughout the remainder of this paper, lower-case and upper-case
letters implicitly pair probability measures with their densities.
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(x, y) 7→ qx(y) is product measurable. Let X ∼ P be an X -valued random
element. For any probability measure R on Y,

ED(QX‖R) = D(QP ‖R) + ED(QX‖QP )

where QP represents the P -mixture over {qx}.

A less familiar decomposition, which we will call the reverse compensation
identity, holds when the expected I-divergence’s second argument is random
rather than its first. Instead of a mixture, it involves a geometric mixture.3

We define the P -geometric mixture of {qx} to be the probability measure with
density

Q̃P (y) :=
eEX∼P log qX(y)∫

eEX∼P log qX(y)dµ(y)
.

Jensen’s inequality and Tonelli’s theorem together provide an upper bound for
the denominator. ∫

eE log qX(y)dµ(y) ≤ E
∫
elog qX(y)dµ(y)

= 1

This integral can be zero, however, in which case the geometric mixture is not
well-defined.4

Theorem 1.2 (The reverse compensation identity). Let {qx : x ∈ X} be a
family of probability densities with respect to a σ-finite measure µ, and suppose
that (x, y) 7→ qx(y) is product measurable. Let X ∼ P be an X -valued random
element. If

∫
eE log qX(y)dµ(y) > 0, then for any probability measure R on Y,

ED(R‖QX) = D(R‖Q̃P ) + ED(Q̃P ‖QX)

where Q̃P represents the P -geometric mixture over {qx}.

Proofs of Theorems 1.1 and 1.2 can be found in [Brinda, 2018, Appendix A].
Theorems 1.1 and 1.2 are perfectly analogous to the bias-variance decompo-

sition for Hilbert-space-valued random vectors.5 The expected divergence from
the a random element to a fixed element decomposes into the divergence from
a “centroid” of the random element to that fixed element plus the internal vari-
ation of the random element from that centroid.6 We suggest a notation that

3What we call a “geometric mixture” is sometimes called a “log mixture” or “log-convex
mixture,” for instance by [Grünwald, 2007, Sec 19.6].

4An example of such a pathological case is when qX has positive probabilities on two
densities that are mutually singular.

5In fact, the compensation identity and bias-variance decomposition are both instances of
this decomposition for Bregman divergences — see [Telgarsky and Dasgupta, 2012, Lem 3.5]
and Pfau [2013].

6It follows that the centroid is the choice of fixed element that has the smallest possible
expected divergence from the random element.
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makes use of this intuition:

V̄QX : = inf
R

ED(QX‖R)

= ED(QX‖QP )

and7

ṼQX : = inf
R

ED(R‖QX)

=

{
ED(Q̃P ‖QX), if

∫
eE log qX(y)dµ(y) > 0

∞, otherwise.

We also suggest the terminology information risk (I-risk), information bias
(I-bias) squared, and information variance (I-variance) for the quantities in
the compensation identity as well as the terminology reverse information risk
(rI-risk), reverse information bias (rI-bias) squared, and reverse information
variance (rI-variance) for the quantities in the reverse compensation identity.8

The language introduced here comports with that of information projections
(I-projections) and reverse information projections (rI-projections).

The compensation identities can provide insights regarding regularization,
and we conclude this subsection with one such observation. A simple way to
regularize a point-estimator θ̂ is by shrinking it toward any constant point θ0.
The variance of [1 − λ]θ̂ + λθ0 is [1 − λ]2 times the variance of the original

estimator θ̂. Similarly, a density estimator’s I-variance can always be decreased
by mixing with a fixed distribution.

Theorem 1.3. Let {qx : x ∈ X} be a family of probability densities with respect
to a σ-finite measure γ, and suppose that (x, y) 7→ qx(y) is product measurable.
Let X be an X -valued random element. For any fixed known probability measure
Q̌, the I-variance of the mixture V([1 − λ]QX + λQ̌) is non-increasing as λ ∈
[0, 1] increases. The I-variance is strictly decreasing unless QX equals Q̌ with
probability one.

Proof. With P representing the distribution of X, the mixture’s centroid is
[1− λ]QP + λQ̌.

For any λ1 ∈ [λ, 1], a draw from [1 − λ1]Qx + λ1Q̌ can be achieved by
“processing” a draw from [1 − λ]Qx + λQ̌. One simply needs to switch it to a
new draw from Q̌ with probability λ1−λ

1−λ . The data processing inequality tells
us that two processed distributions are no further in relative entropy than the
unprocessed distributions were.

The same processing that transforms [1−λ1]Qx+λ1Q̌ to [1−λ]Qx+λQ̌ also
transforms the centroids appropriately. Thus by the data processing inequality,

D([1− λ1]Qx + λ1Q̌ ‖ [1− λ1]QP + λ1Q̌) ≤ D([1− λ]Qx + λQ̌ ‖ [1− λ]QP + λQ̌).

Since this holds for every x ∈ X , it holds for any expectation over X .

7This alternative representation of Ṽ is justified by [Brinda, 2018, Lem A.3.4].
8For information-theoretic interpretations of these quantities, see [Brinda, 2018, Sec A.1].
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USE an abstract Taylor expansion to show that the I-variance behaves pro-
portionally to (1− λ)2 plus lower order terms. What type of abstract derivatives
are needed? Frechet? Make sure to build in enough conditions to guarantee that
needed derivatives exist - then if it’s challenging to state a closed-form expres-

sion just use a symbol e.g. “ (1−λ)2

2 EsX · (QX −QP )2 +O([1− λ]3) where s is
the second Frechet(?) derivative - how can I guarantee that it’s finite? it wouldn’t

be the end of the world to just add the condition that EsX · (QX −QP )2 is finite.
CHECK to see if the squared I-bias behaves proportionally to λ2 plus lower

order terms when QX is unbiased - if so, then state a corollary that for any

P and Q̌ the risk of an estimator with zero I-bias can always be improved by
regularizing with some positive λ. Presumably similar results hold for the rI-risk
quantities. Move all proofs to the end.

2 Variational Bayesian estimators

Calculus of variations is the study of optimization over a space of functionals.
Variational approximation means identifying the functional in a set that is clos-
est to a fixed target functional. When the target functional is a probability
measure with a density only known up to a constant, the task of identifying
the closest probability measure in a set is variational Bayesian inference. I-
divergence (with either order of arguments) is a commonly used divergence in
this context. To begin this section, we provide a straight-forward explanation
of the mean field algorithm by making reference to the reverse compensation
identity. Then we point to variational posterior mixtures as density estimators
of interest.

2.1 Mean field approximation

When I-divergence (with the target as the second argument) is used to quantify
closeness and the search space comprises all probability measures with a specific
product structure, the variational Bayes problem is called mean field approxima-
tion. The approximating distribution is the information projection of the target
onto the set of all probability measures with the specified product structure.
Inspired by the mean field theory of physics, Ghahramani [1995] introduced this
technique for statistical learning.

Suppose some target distribution on X ×Y can be represented as P ⊗{Qx}
for some probability measure P on X and a probability kernel {Qx : x ∈ X} of
“conditional distributions” with densities {qx} relative to a σ-finite dominating
measure. The relative entropy from any product measure P̌ ⊗ Q̌ to the target
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is9

D(P̌ ⊗ Q̌‖P ⊗ {Qx}) = EX∼P̌EY∼Q̌ log
p̌(X)q̌(X)

p(X)qX(Y )

= D(P̌‖P ) + EX∼P̌D(Q̌‖QX). (1)

The reverse compensation identity (Theorem 1.2) implies that for any given
P̌ , the optimal choice of Q̌ is the P̌ -geometric mixture of {Qx}. Likewise, if
the target distribution also has a representation as Q ⊗ {Py} with the roles of
marginal and conditional variable reversed, then the Q̌-geometric mixture of
{Py} is the optimal choice of P̌ for fixed Q̌. The same logic continues to hold if
the product structure has more than two components: any one component to be
optimized plays the role of Q̌ in (1) while the rest of the components together
play the role of P̌ . The mean field algorithm constructs a product measure
approximation by cycling through the components in this manner, updating
each piece by setting it to the appropriate geometric mixture.10 Equation (1)
makes it clear that the algorithm is monotonic; each step can only decrease the
relative entropy from the product approximation to the target; furthermore, it
is guaranteed to converge to a local optimum [Bishop, 2006, Sec 10.1.1].

In Bayesian analysis, the posterior distribution represents an appropriate
“belief” about the unknown parameter that arises from updating a prior belief
based on observed data. However, posterior probabilities of parameter regions
and posterior expectations of functions of the parameters are often challeng-
ing to calculate. If the parameters have a conjugate prior, then integrals can
be calculated analytically; if the dimension of the parameter space is small,
then integrals can be calculated numerically. Otherwise, practitioners turn to
a variety of other approaches. Markov Chain Monte Carlo methods attempt to
generate samples from the true posterior, but it is time-consuming and can do
poorly when the posterior is badly multi-modal. Alternatively, the posterior’s
mean field approximation can have an analytically tractable form. Most conve-
nient is when each conditional family is an exponential family, in which case the
geometric mixture is itself in that family as well11; one simply needs to update
the hyper-parameters to identify the new distribution.

Consider reversing the order of arguments; let us ask what is the best product
approximation when the target distribution is the first argument of I-divergence.

D(P ⊗ {Qx}‖P̌ ⊗ Q̌) = D(P‖P̌ ) + EX∼PD(QX‖Q̌)

9The freedom to choose the order of integration is justified by Tonelli’s theorem because
there is a an alternative representation of relative entropy with a non-negative integrand. One
source with a clear explanation is [Brinda and Klusowski, Submitted to Bernoulli in 2018, Lem
3.1].

10Most sources explaining the mean field algorithm put the joint distributions in place of
the conditional distributions in the expression that we call the “geometric mixture.” Both
definitions result in the same distribution, so one can use whichever is more convenient.

11The P̌ -geometric mixture over an exponential family is the distribution corresponding to
the expectation of the canonical parameter, so the problem is simplest when x is indexing a
canonical parameterization.
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No matter what P̌ has been used, the optimal choice of Q̌ is the P -mixture
of {Qx}, according to the compensation identity (Theorem 1.1). Likewise, the
optimal P̌ is the Q-mixture of {Py}. These are precisely the marginals of the
target distribution, and the resulting relative entropy to the approximation is
the mutual information. The expectation propagation algorithm was devised by
Minka [2001] to seek the marginal distributions when the normalizing factor is
unknown. In general, the mean field approximation is more concentrated than
the product of the marginals [Bishop, 2006, Sec 10.1.2].

Variational Bayesian methods may be useful for calculating approximate
posteriors, but they are also “statistically unsound” in a sense. Ideally, a statis-
tical procedure should be eventually correct, if enough data is collected and the
algorithm runs long enough. However, if for instance the correct posterior belief
is that the variables are highly correlated, the product approximations will never
indicate that belief regardless of the amount of data and run-time. Any change
in the scale of a probability measure will have an exactly corresponding change
in the scale of the mean field approximation and the product of marginals ap-
proximation since relative entropy is scale-invariant. The resulting divergence
between the probability measure and its approximation will remain unchanged
in terms of relative entropy or any other f -divergence. Thus as a probability
measure becomes more concentrated, these product approximations do not get
closer to it, at least in terms of scale-invariant divergences. Variational Bayesian
methods trade correctness for convenience, but their popularity is a sign that
this trade-off is sometimes worth taking.

2.2 Variational posterior mixtures

In Bayesian analysis, the mixture over the model distributions using the poste-
rior distribution for the mixing weights is called the posterior mixture. It repre-
sents the Bayesian’s belief about what the next datum will be. In a variational
Bayesian analysis, one might instead use the approximate posterior as mixing
weights to calculate what we will call the variational posterior mixture, or more
specifically either the mean field mixture or product of marginals mixture; this
is demonstrated in [Bishop, 2006, Sec 10.2.3].

If the posterior becomes increasingly concentrated and the model is rea-
sonably smooth, then both the posterior mixture and the variational posterior
mixture will come to resemble the MAP distribution. In fact, one might think
of the variational mixture as being between the posterior mixture and the MAP.
In light of the compensation identities, we will explore whether this comparison
has an interpretation in terms of the I-divergence risk analogues of bias and
variance.

To work out the risk in the upcoming example, we will need to know the
mean field approximation of a d-dimensional Gaussian distribution with mean
θ and precision matrix Λ. As [Bishop, 2006, Sec 10.1.2] explains, each product
component is Gaussian and inherits its means from the original distribution and
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inherits its precision matrix12 from the corresponding rows and columns of Λ.

3 Risk of Gaussian location estimators

Let Xn := (X1, . . . , Xn)
iid∼ P , and assume P has finite second moments, letting

µ and Σ denote its mean and covariance matrix. We will compare a handful
of density estimators based on a Gaussian location model {N(θ, Id) : θ ∈ Rd}.
For any estimator QXn , we can decompose the risk into “bias squared” and
“variance” terms

E
Xn

iid∼P
D(P‖QXn) = D(P‖Q̃Pn) + E

Xn
iid∼P

D(Q̃Pn‖QXn);

these quantities are called the rI-risk, rI-bias squared, and rI-variance in Sec-
tion 1.

If the estimator QXn is Gaussian N(θ̂(Xn), C) for some covariance C that

does not depend on the data, then Q̃Pn is N(θ̃, C) where θ̃ := E
Xn

iid∼P
θ̂(Xn),

then the rI-bias squared simplifies conveniently as

D(P‖Q̃Pn) = 1
2EY∼P [Y − θ̃]′Σ−1[Y − θ̃] + 1

2 log[(2π)d|C|]− h(P )

= 1
2

(
tr(C−1Σ) + [µ− θ̃]′C−1[µ− θ̃] + log |C|

)
+ d

2 log(2π)− h(P )︸ ︷︷ ︸
“zP ”

.

The rI-variance simplifies as well, if we interchange the order of integration (to
justify the interchange, again see [Brinda, 2018, Lem A.3.1])

E
Xn

iid∼P
D(Q̃Pn‖QXn) = 1

2EY∼PEXniid∼P
(

[Y − θ̂(Xn)]′C−1[Y − θ̂(Xn)]− [Y − θ̃]′C−1[Y − θ̃]
)

= E
Xn

iid∼P
[θ̂(Xn)− θ̃]′C−1[θ̂(Xn)− θ̃].

Assuming additionally that the location estimate is a linear transformation T
of the sample mean, the rI-variance simplifies further. θ̂(Xn) = TX implies

θ̃ := Eθ̂(Xn) is Tµ, so the rI-variance term is

E
Xn

iid∼P
[TX − Tµ]′C−1[TX − Tµ] = E

Xn
iid∼P

[X − µ]′T ′C−1T [X − µ]

= 1
n tr(T ′C−1TΣ).

Remarkably, the risk only depends on P via µ and Σ, except for the differential
entropy term in zP .

We will compare five estimators in this context: maximum likelihood, MAP,
posterior mixture, mean field mixture, and product of marginals mixture.13 We
will see that all of them satisfy the assumptions posited above in that they map
Xn to a normal location family and that the selected location θ̂(Xn) is a linear
transformation of the sample mean.

12In contrast, the product of marginals approximation inherits its covariance matrix from
the original Gaussian distribution.

13The latter two were defined in .
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The {N(θ, Id) : θ ∈ Rd} model’s maximum likelihood estimator gives the

random distribution QXn = N(X, Id). For that estimator, Σ is Id, θ̂(X
n) is X,

θ̃ is µ, and the rI-bias squared and rI-variance simplify to

D(P‖Q̃Pn) = 1
2 tr(Σ) + zP

and

E
Xn

iid∼P
D(Q̃Pn‖QXn) = 1

n tr(Σ)

As a sanity check, observe that if P is indeed Gaussian with identity covariance,
the rI-bias is zero and the rI-variance is E‖X1 − µ‖2/n.

Next, we consider estimators that can arise from Bayesian analysis using
a N(0, V0) prior on the location; let Λ0 := V −1

0 be the prior’s precision. The
posterior is also Gaussian with precision Λn = Λ0 + nId and location nVnX,
where Vn denotes Λ−1

n , the posterior’s covariance — see [Murphy, 2007, Sec 7].
The MAP is the distribution QXn = N(nVnX, Id). It has expected location

θ̃ = nVnµ, and its rI-risk decomposition has

D(P‖Q̃Pn) = 1
2 tr(Σ) + ‖µ− nVnµ‖2 + zP

and

E
Xn

iid∼P
D(Q̃Pn‖QXn) = n tr(V ′nVnΣ).

The posterior mixture is a Gaussian weighting over a Gaussian location
model, which results in another Gaussian distribution. The mean of the result-
ing Gaussian is equal to the mean of the weighting distribution, in our case
nVnX. The resulting Gaussian’s covariance is larger than that of the model,
however; it can be seen using [Bishop, 2006, Sec 2.3.3] that the resulting co-
variance is the sum of the mixing covariance and model covariance, in our case
Vn + Id.

The posterior mixture is therefore QXn = N(nVnX,Vn+ Id) and has rI-bias
squared

D(P‖Q̃Pn) = 1
2 tr((Vn + Id)

−1Σ) + [µ− nVnµ]′(Vn + Id)
−1[µ− nVnµ] + 1

2 log |Vn + Id|+ zP

and rI-variance

E
Xn

iid∼P
D(Q̃Pn‖QXn) = n tr(V ′n(Vn + Id)

−1VnΣ). (2)

Consider the mean field approximation that imposes mutual independence
on all of the posterior’s coordinates. Recall from our earlier discussion that the
posterior’s mean field approximation with independent coordinates has the same
mean nVnX and has precision diag(Λn). Therefore the mean field posterior mix-
tures is QXn = N(nVnX, [diag(Λn)]−1 + Id). Its rI-bias squared and rI-variance
look like the posterior mixture’s, except that instances of the posterior mixture’s
covariance Vn + Id should instead be the mean field approximation’s covariance
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[diag(Λn)]−1 + Id. Similarly for the product-of-marginals approximation impos-
ing independent coordinates, which is QXn = N(nVnX, diag(Vn) + Id) so the
posterior mixture’s precision must be replaced with the precision diag(Vn) + Id
in the rI-risk quantities.

Now we will visually compare the rI-biases, rI-variances, and total rI-risks
of these estimators when the dimension is d = 2 and the sample size is n = 1.
Suppose that P has expectation µ = r√

2
(1, 1)′ and covariance

Σ = s

[
1 ρ
ρ 1

]
.

For maximum likelihood, the rI-risk quantities (ignoring zp) will not depend on
a or ρ. The rI-bias squared is s+zP and the rI-variance is s/n for a total rI-risk
of (1 + 1

n )s+ zP .
The behavior of the Bayesian estimators depend on ρ and a in addition to

s. For zero (ρ = 0), low (ρ = .25), and high (ρ = .75) correlations respectively,
Figures 1, 2, and 3 provide heat maps over the (a, s)-plane. These plots indicate
the relative behavior of our estimators over a rather large portion of the space
of possible data-generating distributions.14

If the chosen prior covariance is diagonal, then so is the posterior covariance.
In that case the mean field and the product of marginals approximations are
both the same as the actual posterior. To ensure that our plots highlight the
differences that can result from using the approximate versus the true posterior,
we will use a prior of

V0 =

[
1 .75
.75 1

]
.

Equation (2) makes it clear that each estimator’s rI-variance is actually linear
in s and has no dependence on a. Figure 4 provides a better view and shows
both variational Bayesian approximations between the MAP and the posterior
mixture for the data-generating covariances under consideration.that figure is
completely unnecessary. does this provide evidence against a regularizing effect
of the variational Bayesian approximations? COMMENT???

In terms of both rI-bias and rI-variance, our visualizations show the varia-
tional Bayesian approximation mixtures behaving “in between” the MAP and
posterior mixture. Furthermore, for some true distributions, the rI-risk of the
variational Bayesian approximation can be lower than the rI-risk of the true
Bayesian procedure being approximated. However, we note that the posterior
mixture has smaller expected rI-risk if the averaging is taken with respect to
the prior over the model — see [Brinda, 2018, Sec A.2].

14This claim of a “rather large portion” refers to the many symmetries inherent in the prob-
lem and to the fact that our analysis did not assume any particular form for the distribution
P .
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Figure 1: A sample of size is n = 1 is to be taken from a data-generating
distribution with expectation r√

2
(1, 1)′, marginal standard deviations s, and

correlation ρ = 0. The heat maps show the reverse compensation identity’s
quantities for four Bayesian estimators of standard Gaussian location using a
Gaussian prior with mean zero, both standard deviations 1, and correlation .75.
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Figure 2: A sample of size is n = 1 is to be taken from a data-generating
distribution with expectation r√

2
(1, 1)′, marginal standard deviations s, and

correlation ρ = .25. The heat maps show the reverse compensation identity’s
quantities for four Bayesian estimators of standard Gaussian location using a
Gaussian prior with mean zero, both standard deviations 1, and correlation .75.
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Figure 3: A sample of size is n = 1 is to be taken from a data-generating
distribution with expectation r√

2
(1, 1)′, marginal standard deviations s, and

correlation ρ = .75. The heat maps show the reverse compensation identity’s
quantities for four Bayesian estimators of standard Gaussian location using a
Gaussian prior with mean zero, both standard deviations 1, and correlation .75.
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Figure 4: A sample of size is n = 1 is to be taken from a two-dimensional data-
generating distribution with marginal standard deviations s and three possible
correlations ρ = 0, .25, and .75. The lines show the rI-variances of four Bayesian
estimators of standard Gaussian location using a Gaussian prior with mean zero,
both standard deviations 1, and correlation .75. MAP is in green, posterior
mixture is in blue, mean field mixture is in red, and product of marginals mixture
is in purple.

4 Risk of Bayesian Gaussian mixture estimators

Next, we will consider how variational approximation affects risk in the context
of Gaussian mixtures. Specifically, consider Bayesian inference with a prior
that has independent standard Gaussians for the component means and has
independent uniform multi-Bernoulli distributions for the labels. Furthermore,
the prior has all component means independent of all labels. The true posterior
can have dependence between the component means and labels, and it can be
hard to compute. On the other hand, the mean field algorithm for independent
posterior component means and labels is easy to iterate.

We will compare risk quantities of the MAP, the posterior mixture, and the
mean field mixture. Unlike the single Gaussian location model, we are not able
to derive closed-form estimators for the Gaussian mixture model with two or
more components, so the calculations will require more numerical approximation
and simulation.

Whereas the Gaussian location example analyzed the risk with the data-
generating distribution as the first argument of relative entropy, this time we
will reverse the order of arguments, placing the estimated distribution first.
The resulting risk decomposition comes from the compensation identity (Theo-
rem 1.1); it decomposes the I-risk into I-bias squared and I-variance, according
to terminology introduced in Section 1.

The posterior for the component means has density proportional to(∏
k

e−
1
2‖µk‖

2

)(∏
i

∑
k

e−
1

2σ2 ‖Xi−µk‖2
)
.
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The mean field algorithm for this context can be adapted from [Bishop, 2006, Sec
10.2]. It alternates updating the “responsibilities” of the various components for
the observations and then updating the component means’ distributions. The
unnormalized responsibility of component j for observation i is

γ̌i,j := e−
1

2σ2
E‖Xi−µj‖2 = e−

1
2σ2

[‖Xi−Eµj‖2+E‖µj−Eµj‖2]

where the expectation is with respect to µj using its current distribution.15

For each observation i, the k responsibilities γi,1, . . . , γi,k are the normalized
version of γ̌i,1, . . . , γ̌i,k.16 Once the responsibilities have been calculated, the
component mean posteriors are updated as follows. Define nj to be the sum
of the responsibilities of component j, summing over all observations; it can be
thought of as the effective sample size for component j. Define also a weighted
average for each component by

x̄j :=
1

nj

∑
i

γi,jxi.

When each component mean’s prior is a standard Gaussian, the update rule
sets the new distribution for the jth component mean to Gaussian with location
nj

σ2+nj
x̄j and precision ( 1

σ2 + nj)Id.

The mean field posterior’s component mean distributions remain indepen-
dent of each other, and its variational posterior mixture is easy to calculate: it
is simply the k-component mixture of the individual means’ posterior mixtures
[Bishop, 2006, Sec 10.2.3]. Each component contributes a continuous Gaussian
mixture over a Gaussian location model, which results in a Gaussian; the re-
sulting Gaussian’s mean is equal to the posterior’s mean while its covariance is
equal to the sum of the posterior’s covariance and the model covariance. Thus,
the mean field mixture is yet another Gaussian mixture, though its component
variances differ from each other and are larger than the model variance.

A concrete example will add to our understanding of the relationship between
the MAP, the posterior mixture, and the mean field mixture. We use the two-
component GRBM model with σ2 = 1. Suppose n = 10 and the true data-
generating distribution is 1

2N(1.75, 1) + 1
2N(−1.75, 1). Figure 5 (left column)

shows the the posterior densities for four different samples. For each sample, a
run of the mean field algorithm gives the density shown in the right column.17

As in the Gaussian location example, it seems reasonable that the mean field
mixture can be fruitfully thought of as an estimator somewhere between the
true posterior mixture and the MAP; we will explore this idea further with
additional plots.

Figure 6 shows the four repetitions of n = 10 data points and plots the
true data-generating density along with the MAP, the posterior mixture, and

15The initializations for the component means’ posterior distributions need to be distinct
in order to break the symmetry.

16This terminology is used by [Bishop, 2006, Sec 10.2], highlighting a parallel with the EM
algorithm for mixtures.

17In reality, the mean field algorithm only “selects” one of the two modes, but our figure
shows an equivalent density since the model is symmetric across the line µ2 = µ1.
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Figure 5: Top left: The standard Gaussian prior on (µ1, µ2). Top right: The
likelihood of a sample of size n = 10 drawn from 1

2N(1.75, 1) + 1
2N(−1.75, 1).

Bottom left: The posterior we get by dividing the product of prior and like-
lihood by a numerically calculated integral of that product. Bottom right: A
(symmetrized) mean field approximation to the posterior according to a run of
the mean field algorithm.
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the mean field posterior mixture. Each MAP has two distinct peaks, while the
posterior mixtures are much more smoothed out, and the mean field mixtures
is always between the two.

We also provide Figure 7 to show the centroids of the estimators approxi-
mately. To produce these centroids, the MAP, posterior mixture, and mean field
mixture were each calculated for M = 50 independently generated datasets.
Each estimator’s centroid is approximated by the uniform mixture of its M re-
alizations. We further refine the approximate centroids by symmetrizing since
in this case it is obvious that the centroid should be symmetric about zero. Our
figure shows that the mean field mixture’s approximate centroid is almost the
same as that of the posterior mixture; it is “pulled” a bit toward the MAP’s
centroid.

Figure 8 shows the three estimates from our first dataset and the approx-
imate centroids. It also reports the estimators’ I-variances each of which is
approximated by the average of the relative entropies from the M = 50 esti-
mates to the centroid.18

To see how the MAP, posterior mixture, and mean field posterior mixture
compare over a larger set of possible data-generating distributions, we consider
probability measures of the form 1

2N(a, s2) + 1
2N(−a, s2). Figure 9 visualizes

the three estimators’ compensation identity quantities over a range of (a, s).19

These examples reinforce the idea that the mean field mixture’s behavior
is between that of the posterior mixture and the MAP. In Figure 7, the mean
field mixture’s centroid is almost the same as the posterior mixture’s, both of
which are better than that of the MAP. That same phenomenon is seen more
generally in the top row of Figure 9. Figure 8 indicates that the mean field
mixture’s I-variance is close to that of the posterior mixture and that both of
which are a bit smaller than that of the MAP; again the Figure 9 mirrors this
observation in its middle row.

In Bayesian estimation, the posterior mixture is in many ways statistically
preferable to the MAP.20 It is also computationally infeasible except in certain
cases, unlike the MAP. For Bayesian Gaussian mixture modeling, the posterior
mixture indeed has no closed form. Our example demonstrates that the mean
field approximation can combine the advantages of both estimators: it can gain
the statistical benefits of mixing while retaining a simple closed form.
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Figure 6: The data-generating distribution 1
2N(1.75, 1)+ 1

2N(−1.75, 1) has den-
sity shown in black. After each of four samples of size n = 10 (shown by the
black points), the MAP (green), posterior mixture (blue), and mean field poste-
rior mixture (red) are plotted and their relative entropies to the data-generating
distribution are stated to four decimal places.
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Figure 7: The data-generating distribution 1
2N(1.75, 1)+ 1

2N(−1.75, 1) has den-
sity shown in black. For n = 10, approximate centroids of MAP (green), poste-
rior mixture (blue), and mean field posterior mixture (red) are shown and their
relative entropies to the data-generating distribution (which are the estimators’
I-biases squared) are stated to four decimals.
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Figure 8: Four repetitions of n = 10 draws are taken from the data-generating
distribution 1

2N(1.75, 1) + 1
2N(−1.75, 1). The MAP (top), posterior mixture

(middle), and mean field mixture (bottom) are plotted along with their approx-
imate centroids (darker). I-variances are approximated by the average M = 50
simulations’ estimators from the centroids, and the standard errors arising from
the simulated samples are given.
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Figure 9: n = 10 draws are taken from the data-generating distribution
1
2N(a, s2) + 1

2N(−a, s2). Heat maps show the I-risk quantities of the MAP,
posterior mixture, and mean field posterior mixture for a range of (a, s). The
values were calculated approximately by simulation, resulting in noisy (and
overly correlated) contours even after smoothing.
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