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Abstract

In recent years, researchers have developed the tensor method to approximate closed-form solutions

for method of moments estimation procedures involving third-order moments. The tensor method

indicates a way of performing estimation for problems in which maximum-likelihood is compu-

tationally intractable due to a highly multi-modal likelihood surface. However, the tensor method

has complications and instabilities that limit its use in practice. One notable issue is the require-

ment that the true parameters must be linearly independent, implying that the dimension must be

at least as large as the number of parameters. Here, we present two variants of the tensor method

that engage with this issue. First, we describe an approach using principal components which are

not linearly independent but make the ingredients of the tensor method more familiar and intuitive.

Second, we describe the process of embedding the vectors in a higher-dimensional space to apply

a tensor method to the embedded vectors. Finally, we demonstrate our new approaches in the con-

text of estimating Gaussian mixtures. The principal components version of the algorithm results

in a simpler estimation of the component parameters’ third-order moments. The basis expansion

example demonstrates how to devise additional variables and estimate the relevant moments in the

higher-dimensional space.

Key Words: tensor method, Gaussian mixtures, basis expansion, method of moments, principal

components

1. Introduction

Method of moments estimation procedures choose a model distribution whose moments

match empirical moments of the data. For any distribution on R
d, the first moments com-

prise a vector in R
d. A particular value of the first moment may uniquely correspond

to a model distribution if the model has fewer than d parameters. The second moments

comprise a positive semi-definite matrix in R
d×d. Again, a particular combination of first

and second moments may correspond to a unique model distribution if the model has few

enough parameters. First and second moments are not sufficient to identify distributions

within higher-dimensional models, but one can then make reference to higher moments.

Techniques have recently been developed to relate certain models’ parameters to the gen-

erating distribution’s tensor of third moments and to efficiently find a model distribution

corresponding approximately to a given set of first, second, and third moments.

The idea at the heart of the new tensor methods comes from [Chang, 1996] in the

context of Markov models; the idea’s generality and broader usefulness were revealed in

[Anandkumar et al., 2012] and [Anandkumar et al., 2014]. Essentially, the “tensor trick”

involves transforming a third-order tensor such that it becomes a sum of rank-one tensors

built from orthonormal vectors that relate meaningfully to vectors of interest, such as model

parameters. Section 2 first presents the algorithm in the abstract context of discovering a

set of fixed vectors, adapted from explanations in [Anandkumar et al., 2012] and Section 2

of [Hsu and Kakade, 2013]. We then describe a variant of the algorithm that starts by cen-

tering the vectors which we argue is more intuitive and which makes the third-order tensors
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more convenient to estimate. We also describe a variant of the algorithm that embeds the

vectors in a higher-dimensional space; this makes it possible to discover more component

vectors than there are dimensions in the original data. In Section 3, we use our variants of

the tensor method to estimate the component means of a Gaussian mixture. With the first

variant, we estimate a Gaussian mixture whose components have an unknown variance.

With the second variant, we estimate a five-component Gaussian mixture in R
2. All code

used in our examples is available at www.quantitations.com/research.

2. Tensor Method for Finding Vectors

We start with an abstract formulation of what the tensor method accomplishes. Let

{µ1, . . . , µk} be linearly independent vectors in R
d, and let P be the discrete distribution

on these points with all probabilities equal to 1/k. Using empirical moments of this set of

points, we will see how to calculate the original vectors.

2.1 Using Second and Third-order Moments

If the second-order moments

SP := 1

k

∑

j

µj ⊗ µj

and the third-order moments

TP := 1

k

∑

j

µj ⊗ µj ⊗ µj

are both known, then the vectors {µ1, . . . , µk} can be calculated as follows.

Noticing that SP has rank k, let
∑k

j=1
λjqj ⊗ qj comprise a decomposition of SP with

q1, . . . , qk orthonormal and λ1 ≥ . . . ≥ λk > 0. The square root of the Moore-Penrose

inverse of SP is

S
−1/2
P

:=

k∑

j=1

1√
λj

qj ⊗ qj.

The so-called “whitened” vectors { 1√
k
S
−1/2
P

µ1, . . . ,
1√
k
S
−1/2
P

µk} are orthonormal because

the sum of their outer products is an orthogonal projection operator (Lemma 1)

∑

j

(
1√
k
S
−1/2
P

µj

)
⊗
(

1√
k
S
−1/2
P

µj

)
= S

−1/2
P


 1

k

∑

j

µj ⊗ µj


S

−1/2
P

= S
−1/2
P


∑

j

λjqj ⊗ qj


S

−1/2
P

=
∑

j

λj(S
−1/2
P

qj)⊗ (S
−1/2
P

qj)

=
∑

j

λj

(
1√
λj

qj

)
⊗

(
1√
λj

qj

)

=
∑

j

qj ⊗ qj.
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Next consider the transformation formed by applying a unit vector v into TP then

“whitening” both sides and rescaling:

S
−1/2
P

[TP · v]S−1/2
P

= S
−1/2
P


 1

k

∑

j

〈v, µj〉µj ⊗ µj


S

−1/2
P

=
∑

j

〈v, µj〉︸ ︷︷ ︸
“γj”

(
1√
k
S
−1/2
P

µj

)
⊗

(
1√
k
S
−1/2
P

µj

)
. (1)

Because { 1√
k
S
−1/2
P

µ1, . . . ,
1√
k
S
−1/2
P

µk} are orthonormal, this represents a spectral de-

composition. Therefore, as long as the eigenvalues are distinct, a set of k eigenvectors

{w1, . . . , wk} of S
−1/2
P

[TP · v]S−1/2
P

are equal to the whitened vectors

{ 1√
k
S
−1/2
P

µ1, . . . ,
1√
k
S
−1/2
P

µk} except for possibly different signs. Transforming wj by
√
kS

1/2
P

=
√
k
∑

j

√
λjqj ⊗ qj undoes the whitening and gives us either µj or −µj . If γj

(see Equation 1) equals the inner product of v with the proposed mean
√
kS

1/2
P

wj , then the

sign of uj does not need to be reversed. Otherwise γj is −〈v,
√
kS

1/2
P

wj〉, and we conclude

that µj = −
√
kS

1/2
P

wj . It suffices to compare the sign of 〈v, S1/2
P

wj〉 with that of the cor-

responding eigenvalue γj . This can be expressed conveniently in terms of an intermediate

vector uj where

uj :=
√
kS

1/2
P

wj

µj = sign(γj〈v, uj〉)uj .

The unit vector v can be generated uniformly at random in order to ensure that the eigen-

values are distinct with probability 1.

We note that in some cases it preferable to directly estimate TP ·v rather than estimating

the third-order tensor then applying v into that estimate. We will make use of this approach

in Section 3.2.

2.2 Using Central Moments

Additional intuition is provided by a variant of this algorithm that uses µ̄ := 1

k

∑
j µj along

with the second and third-order central moments

ΣP := 1

k

∑

j

(µj − µ̄)⊗ (µj − µ̄)

and

ΓP := 1

k

∑

j

(µj − µ̄)⊗ (µj − µ̄)⊗ (µj − µ̄).

A spectral decomposition of ΣP as
∑k

j=1
λjqj ⊗ qj is a familiar step in principal com-

ponents analysis. The eigenvectors provide the directions that spread the points out from

most to least, and the corresponding eigenvalues tell us the variances along those directions.

Centering can also simplify the task of estimating moments as exemplified in the upcoming

discussion of Gaussian mixtures.
A complication with this approach is the fact that the centered points cannot be lin-

early independent, as they sum to zero. To circumvent this issue, assuming eigenvalues
λ1, . . . , λk−1 are positive, imagine adding the eigenvector qk to each centered point. The



resulting second moments 1

k

∑
j(µj − µ̄ + qk)⊗ (µj − µ̄ + qk) simplify to ΣP + qk ⊗ qk

which shares the same eigenvectors as ΣP except that its eigenvalue corresponding to qk
is 1 rather than zero. Using q1 as the vector that we apply into the third-order tensor of
qk-shifted centered vectors, we’ll ultimately need the eigenvectors of

[Σ
−1/2
P

+ qk ⊗ qk]


1

k

∑

j

(µj − µ̄+ qk)⊗ (µj − µ̄+ qk)⊗ (µj − µ̄+ qk) · q1


 [Σ

−1/2
P

+ qk ⊗ qk]

which can be shown to simplify to

Σ
−1/2
P

[ΓP · q1]Σ−1/2
P

+
√

λ1[q1 ⊗ qk + qk ⊗ q1].

If it has k distinct positive eigenvalues γ1, . . . , γk, then its eigenvectors w1, . . . , wk provide

the solution

uj :=
√
k
[
Σ
1/2
P

+ qk ⊗ qk

]
wj

µj − µ̄+ qj = sign(γj〈q1, uj〉)uj .

Another choice of eigenvector q2, . . . , qk−1 can be used instead if needed for distinct eigen-

values.

The method can be expressed a bit more simply by recalling that every µj − µ̄ is or-

thogonal to qk. As a result, there is no need to keep track of the coefficient with respect to

qk, so the solution is also represented

ũj :=
√
kΣ

1/2
P

wj

µj − µ̄ = sign(γj〈q1, ũj〉) ũj .

2.3 Using Basis Expansion

If the number of points is smaller than the dimension of the space, the points can still be

recovered from the moments of their embeddings into a higher-dimensional space. If the

mapping f from R
d to a vector space results in linearly independent images

f(µ1), . . . , f(µk), then the image vectors f(µ1), . . . , f(µk) can be calculated from their

moments. With suitable choices of f , one can determine µ1, . . . , µk from their images.

In applications, care must be taken to design a mapping for which the moments of the

higher-dimensional images can be successfully estimated, as we will see in Section 3.2.

3. Third Moment Tensor Method for Estimating Model Parameters

The tensor method can be used when the second and third-order moments of a set of param-

eter vectors can be estimated from the data, in which case those estimates can be substituted

into the algorithm.

3.1 Gaussian Mixture with Unknown Variance

As an example, let P be an equally-weighted mixture of k Gaussian component distribu-

tions each having covariance σ2I for some unknown common σ2. Let {µ1, . . . , µk} denote

the components’ unknown locations.

It is straightforward to relate moments of P to moments of P, the discrete distribution

defined by {µ1, . . . , µk}. Let J be uniform on {1, . . . , k} and let Z ∼ N(0, σ2I) be

independent of J in order to represent X as µJ + Z . By iterated expectation, the expected



value of a draw from P is exactly equal to the average of the component means: EX∼PX =
µ̄. Furthermore, by the law of total covariance that results from conditioning on J , ΣP =
ΣP + σ2I . Notice the implication that P and P share the exact same principal component

vectors and that their variances differ by exactly σ2. For the third-order central moments,

ΓP := E(X − µ̄)⊗ (X − µ̄)⊗ (X − µ̄)

= E(µJ − µ̄+ Z)⊗ (µJ − µ̄+ Z)⊗ (µJ − µ̄+ Z)

= E(µJ − µ̄)⊗ (µJ − µ̄)⊗ (µJ − µ̄)︸ ︷︷ ︸
ΓP

because each of the other terms has expectation zero. When using ordinary third-order

moments rather than central moments, the relationship is more complicated.

With a sample X1, . . . ,Xn
i.i.d.∼ P , let X̄ denote the sample mean, Σ̂P denote the

empirical covariance of the data, and Γ̂P denote the empirical third-order central moments.

Let
∑d

j=1 λ̂j q̂j ⊗ q̂j be a spectral decomposition of Σ̂P . Recall that the kth through dth

eigenvalues of ΣP must equal zero for every possible distribution in the model. Therefore,

the variance of the data in each of the corresponding eigenvector directions is attributable to

noise, so we suggest using σ̂2 := 1

d−k+1

∑d
j=k λ̂j as an estimate of σ2; a simpler alternative

estimate is λk. As an approximate method of moments procedure, substitute X̄ for µ̄,

substitute

Σ̂P =
k−1∑

j=1

(λ̂j − σ̂2)q̂j ⊗ q̂j

for ΣP, and substitute Γ̂P for ΓP into the centered tensor algorithm. This isn’t exactly a

method of moments procedure, because there will typically be no model distribution whose

moments match the empirical ones exactly.

Figure 1 visually demonstrates this method with six components in R
6. Figure 2

demonstrates the convergence of our method in empirical total variation distance in the

same setting. While the tensor method works well in this example, in some other simula-

tions it not very robust to estimation error of the moments.

3.2 Gaussian Mixture with Polynomial Basis Expansion

If the number of components exceeds the number of variables, it can still be possible to use

the tensor method after first expanding the points into a higher-dimensional space. Notice

our application to Gaussian mixtures only used Normality to justify the estimation of σ2;

if σ2 were known, we would only need to make sure that the average of the components’

covariances can be estimated from the data. As a concrete example, let P be a mixture of

up to five Gaussian components {µ1 = (µ1,x, µ1,y), . . . , µk = (µk,x, µk,y)} in R
2, each

with covariance σ2I for a known σ2. We will expand these points into a particular five-

dimensional space in which the components are no longer all Gaussian but in which the

average covariance can be estimated from the data.

Suppose without loss of generality that µ̄ equals the zero vector so that we do not have

to carry the centering notation throughout our derivations. Additionally, let us suppose that

the component points are rotated so that their correlation is zero. This is achieved by mul-

tiplying the centered points by the eigenvectors of ΣP (that is, the principal components)

which can be estimated using the relationship ΣP = ΣP −σ2I . To avoid the extra notation,

we’ll assume that
∑

j µj,xµj,y = 0.



Consider the mapping

φ : (x, y) 7→
(
x, y, xy, x2, y2

)
.

With (X,Y ) ∼ P and with J ∼ Unif{1, . . . , k} representing the choice of a mixture

component, Section A.1 of the appendix calculates the conditional expectations of φ(X,Y )
given J to be

(µJ,x, µJ,y, µJ,xµJ,y, µ2
J,x + σ2, µ2

J,y + σ2).

Let P̃ denote the distribution of φ(X,Y ), and let P̃ denote the uniform distribution on the

expanded component means

µ̃1 = (µ1,x, µ1,y, µ1,xµ1,y, µ2
1,x + σ2, µ2

1,y + σ2)

...

µ̃k = (µk,x, µk,y, µk,xµk,y, µ2
k,x + σ2, µ2

k,y + σ2).

By relating moments of these distributions, we will see how a tensor method enables us to

estimate µ̃1, . . . , µ̃k.

The overall expectations for P̃ are the averages over J of the conditional expectations

µ̄ := (0, 0, 0, s2x + σ2, s2y + σ2)

where s2x := 1

k

∑
j µ

2
j,x and s2y := 1

k

∑
j µ

2
j,y. These are also the expectations of P̃. There-

fore, with (X1, Y1), . . . , (Xn, Yn)
i.i.d.∼ P , we can estimate µ̄ with the average of

φ(X1, Y1), . . . , φ(Xn, Yn). The second moments of P are

S
P̃
= µ̄µ̄T +Σ

P̃
.

The covariance of P̃ coincides exactly with the covariance of the conditional expectation

of P̃ given J . Therefore, we can estimate Σ
P̃

by observing that ΣP̃ equals Σ
P̃

plus the

expected conditional covariance of P̃ given J , according to the law of total covariance.

To this end, Section A.1 shows that the entries of φ(X,Y ) are conditionally uncorrelated

given J and have expected conditional variances

(σ2, σ2, s2xσ
2 + s2yσ

2 + σ4, 4s2xσ
2 + 2σ4, 4s2yσ

2 + 2σ4).

The original coordinates’ second moments s2x and s2y can be estimated from a sample

(X1, Y1), . . . , (Xn, Yn)
i.i.d.∼ P : the law of total variance justifies the estimators ŝ2x :=

1

n

∑
iX

2
i − σ2 and ŝ2y := 1

n

∑
i Y

2
i − σ2.

Finally, rather than trying to deal with the third moments, it will be advantageous to

directly estimate the third moments multiplied by the first coordinate vector

T
P̃
· e1 = 1

k

∑

j

µj,xµ̃jµ̃
T
j .

The expectations of the entries of Xφ(X,Y )φ(X,Y )T are described in Section A.2 so that

the average of these matrices from the sample minus two correction matrices comprises an

unbiased estimator

E

[
1

n

∑

i

Xiφ(Xi, Yi)φ(Xi, Yi)
T − Ĉ1 − Ĉ2

]
= T

P̃
· e1



with

Ĉ1 := σ2




0 0 0 2ŝ2x 0
0 0 ŝ2x 0 0
0 ŝ2x ĉxxx + ĉxyy 2ĉxxy 2ĉxxy
2ŝ2x 0 2ĉxxy 4ĉxxx 0
0 0 2ĉxxy 0 4ĉxyy




and

Ĉ2 := σ2




0 0 0 3ŝ2x + 3σ2 ŝ2y + σ2

0 0 ŝ2y + σ2 0 0

0 ŝ2y + σ2 2ĉxyy 3ĉxxy ĉyyy
3ŝ2x + 3σ2 0 3ĉxxy 4ĉxxx 2ĉxyy
ŝ2y + σ2 0 ĉyyy 2ĉxyy 0




where

ĉxxy := 1

n

∑

i

XiXiYi

is an unbiased estimate of

ĉxxy := 1

k

∑

j

µj,xµj,xµj,z

and likewise for other triplet combinations of coordinates.

Putting our estimated moments into the tensor method of Section 2.1 gives us estimates

of the conditional expectations µ̃1, . . . , µ̃k; the first two coordinates of those vectors are

our estimates of µ1, . . . , µk, the component means in the original space.

This example readily generalizes to data with more than two variables. With d-dimensional

data, one can follow our example to create an additional d quadratic variables along with(d
2

)
product variables, one for every pair of coordinates.

With additional variables, new kinds of entries arise in the correction matrices. How-

ever, every possible type of entry appears in the case of d = 5 or larger. The reader can

readily work out these terms or find them by inspecting a five-dimensional example in the

code accompanying this paper. That code also includes the three-dimensional example

shown in Figure 3. Figure 4 demonstrates the convergence of our method in empirical total

variation distance in the same setting.

These simulations uses the expansion

φ : (x, y, z) 7→
(
x, y, z, y2, z2, xy, xz, yz

)
.

We acknowledge that, based on this example and others, the method apparently requires

a large amount of data to produce high quality estimates. Perhaps a better technique for

modest sample sizes can be discovered by improving the moment estimation, by devising

more robust tensor algorithms, or by making use of other basis transformations.
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A. Appendix

Lemma 1. Let u1, . . . , uk be linearly independent vectors. If
∑k

j=1
uj ⊗ uj is the orthog-

onal projection operator onto their span, then u1, . . . , uk are orthonormal.

Proof. The operator in question applied to ui equals



k∑

j=1

uj ⊗ uj


ui = ui +

∑

j 6=i

〈uj , ui〉uj .

If it’s the orthogonal projection operator, then the image is ui which implies that 〈uj , ui〉 =
0 for every j 6= i. Furthermore, this reveals that

k∑

j=1

‖uj‖2 uj

‖uj‖ ⊗
uj

‖uj‖

is a spectral decomposition. Because any orthogonal projection’s nonzero eigenvalues are

all 1, we conclude that u1, . . . , uk must be unit vectors.

A.1 Calculation of Conditional Covariance of Transformations

With (X,Y ) ∼ P and with J ∼ Unif{1, . . . , k} representing the choice of a mixture

component, let us analyze the conditional covariances of the variables in φ(X,Y ) given J .

Letting X = µJ,x + σZx and Y = µJ,y + σZy with (Zx, Zy) each standard Normal and

independent of each other and of J , we can derive the conditional expectations of the new

variables

E[XY |J ] = E[(µJ,x + σZx)(µJ,y + σZy)|J ]
= µJ,xµJ,y

E[X2|J ] = E[(µJ,x + σZx)
2|J ]

= µ2
J,x + σ2

and analogously for Y 2. Notice that the mapping of the data in the fourth and fifth di-

mension is not exactly the same as the resulting mapping of the component means, as they

differ by σ2.

Now we are ready to work out the expected conditional covariances involving the new

variables, starting with the variances.

var[XY |J ] = E[(σµJ,xZy + σµJ,yZx + σ2ZxZy)
2|J ]

= σ2(µ2
J,x + µ2

J,y + σ2)

has average over J equal to σ2s2x + σ2s2y + σ4.

var[X2|J ] = var[(µJ,x + σZx)
2|J ]

= 4σ2µ2
J,xvar[Zx|J ] + σ4var[Z2

x|J ]
= 4σ2µ2

J,x + 2σ4

has average over J equal to 4σ2s2x + 4σ4. Analogously for Y 2.

cov[XY,X|J ] = E[(σµJ,xZy + σµJ,yZx + σ2ZxZy)σZx|J ]
= σ2µJ,y



has average over J equal to zero because the component points are centered. Similarly for

cov[XY, Y |J ].

cov[X2,X|J ] = E[(2σµJ,xZx + σ2Z2
x)σZx|J ]

= 2σ2µJ,x

also has average over J equal to zero. Likewise for cov[Y 2, Y |J ]. Finally,

cov[X2,XY |J ] = E[(2σµJ,xZx + σ2Z2
x)(σµJ,xZy + σµJ,yZx + σ2ZxZy)|J ]

= 2σ2µJ,xµJ,y

and the same for cov[Y 2,XY |J ]. Both have expectation over J equal to zero because

we’ve assumed that the component points are centered and uncorrelated. All remaining

pairs of different variables clearly have conditional covariance of zero due to the conditional

independence of X and Y given J .

A.2 Expectations of Third Moment of Transformation Times First Coordinate Basis

Vector

In this derivation, we will suppress the random vector argument, writing simply φ. To work

out the expectation of XφφT , we use of the representation φ = µ̃J + (φ− µ̃J).

XφφT = µJ,xφφ
T + σZxφφ

T

= µJ,xµ̃J µ̃J + µJ,x[µ̃J(φ− µ̃J)
T + (φ− µ̃J)µ̃

T
J ] + µJ,x(φ− µ̃J)(φ− µ̃J)

T + σZxφφ
T

The first term has expectation equal to the true TP̃ · e1 which we want to estimate. To

this end, we can subtract from 1

n

∑
i Xiφiφ

T
i estimates of the expectations of the three

additional matrices; we will label these expectations C0, C1, and C2 respectively.

The expectation of each entry of each matrix can be derived. Here we will merely

demonstrate the process by working out the (3, 4) entry of each of the three matrices.

Starting with C2, the (3, 4) entry is

EσZx[XY ][X2]

= EσZx[(µJ,x + σZx)(µJ,y + σZy)][(µJ,x + σZx)
2]

= EσZx[µJ,xµJ,y + σµJ,xZy + σµJ,yZx + σ2ZxZy][µ
2
J,x + 2σµJ,xZx + σ2Z2

x]

= EσZxµJ,xµJ,y2σµJ,xZx + EσZxσµJ,yZxµ
2
J,x + terms with expectation 0

= 3σ2cxxy.

The (3, 4) entry of C1 is

EµJ,x[XY − µJ,xµJ,y][X
2 − (µ2

J,x + σ2)]

= EµJ,x[σµJ,xZy + σµJ,yZx + σ2ZxZy][2σµJ,xZx + σ2Z2
x − σ2]

= EµJ,xσµJ,yZx2σµJ,xZx + terms with expectation 0

= 2σ2cxxy.

Finally C0 has as its (3, 4) entry

EµJ,x[(µJ,xµJ,y)(X
2 − (µ2

J,x + σ2)) + (µ2
J,x + σ2)(XY − µJ,xµJ,y)]

= EµJ,x[(µJ,xµJ,y)(2σµJ,xZx + σ2Z2
x − σ2) + (µ2

J,x + σ2)(σµJ,xZy + σµJ,yZx + σ2ZxZy)]

which can be shown to equal zero. Conveniently, every entry of C0 turns out to be zero, so

it does not require a corresponding correction matrix.



Figure 1: True component mean (orange) compared to their estimated values using our

method (orange) at sample size n = 103. Circle radii indicate σ = 1 (blue) compared to

σ̂ = 0.99 (orange). The k = 6 component means were drawn from the spherical Gaussian

distribution on R
6 centered at the origin and with covariance 9 times the identity matrix.

The component distributions themselves are Gaussian with covariance equal to the identity

matrix.



Figure 2: Empirical Total Variation Distance between true distribution (P ) and estimated

distribution (P̂ ) v.s. sample size (n). The k = 6 component means were drawn from the

spherical Gaussian distribution on R
6 centered at the origin and with covariance 9 times

the identity matrix. The component distributions themselves are Gaussian with covariance

equal to the identity matrix. The components are Gaussian with covariance equal to the

identity matrix.
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Figure 3: True component mean (orange) compared to their estimated values using our

method (orange) at sample sizes (A) n = 104 (B) n = 105 (C) n = 106 (D) n = 107.

The k = 8 component means were drawn from the spherical Gaussian distribution on R
3

centered at the origin and with covariance 9 times the identity matrix. The component

distributions themselves are Gaussian with covariance equal to the identity matrix.



Figure 4: Empirical Total Variation Distance between true distribution (P ) and estimated

distribution (P̂ ). The k = 8 component means were drawn from the spherical Gaussian

distribution on R
3 centered at the origin and with covariance 9 times the identity matrix.

The component distributions themselves are Gaussian with covariance equal to the identity

matrix.
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