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1 Introduction

Markov Chain Monte Carlo (MCMC) algorithms generally have a target distri-
bution as a steady state; they are guaranteed to approach their steady states and
thus produce approximate draws from the desired distribution eventually. The
problem is that there are typically no guarantees on how long it will take before
the process is approximately distributed according to the target. In particular,
in high-dimensional multimodal distributions, it can be practically impossible
for common MCMC techniques to move from one mode to another. Simulated
annealing can help a chain explore a variety of modes, but each chain still ends
up stuck in some mode. One can build both large and small steps into a tech-
nique, but in high dimensions large random steps are unlikely to land anywhere
desirable.

The evolutionary sampling algorithm of Xie et al. [2015] runs multiple chains
simultaneously and gives each chain opportunities to teleport to the location of
another. In that algorithm, the teleportations are governed by Metropolis-
Hastings probabilities. Our proposed algorithm also runs simultaneous chains,
but we prescribe novel teleportation probabilities that guide the chains’ distri-
bution along a planned annealing path from an initializing distribution to the
target.

Theorem 1.1 provides the key insight.

Theorem 1.1. Suppose V and V ′ are independent V-valued random variables
both draw from probability density q, and let r be a probability density on V.
Given V and V ′, generate B ∼ Bern(a+ r(V )−q(V )

q(V ) ) assuming a+ r(V )−q(V )
q(V ) ∈

[0, 1]. Then the random variable Ṽ := BV +(1−B)V ′ has marginal distribution
R.

Proof. The proof is easiest to understand for discrete V with q and r as proba-
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bility mass functions.

P{Ṽ = v} = P{V = v ∩B = 1}+ P{V ′ = v ∩B = 0}
= P{V = v}P{B = 1|V = v}+ P{V ′ = v}P{B = 0}

= q(v)(a+ r(v)−q(v)
q(v) ) + q(v)

∑
v′∈V

q(v′)(1− a− r(v′)−q(v′)
q(v′) )

= aq(v) + r(v)− q(v) + (1− a)q(v)− q(v)
∑
v′∈V

(r(v′)− q(v′))

= r(v)

The logic extends beyond the case of discrete V if mathematical care is taken.

If the current and target densities are in a smoothly time-parametrized fam-
ily {pt}, we can approximate the crucial Bernoulli quantity by using

pt+h(v)− pt(v)

pt(v)
≈ h ∂

∂t log pt(v)︸ ︷︷ ︸
“δv(t)”

(1)

for small enough h. Assume pt is a probability mass function and that wt is
proportional to it.

δv(t) := ∂
∂t log pt(v)

= ∂
∂t log

wt(v)∑
v′∈V wt(v

′)

= ∂
∂t logwt(v)− 1∑

v′∈V wt(v
′)

∑
v′′∈V

∂
∂twt(v

′′)

= ∂
∂t logwt(v)−

∑
v′′∈V

wt(v
′′)∑

v′∈V wt(v
′)

∂
∂t logwt(v

′′)

The second term is the expectation of the first according to the weights pt.
This reveals the advantage of the approximation (1): rather than calculating
the normalizing factor, we can estimate the derivative of its logarithm. This trick
is not limited to discrete distributions, as long as the derivative and integral can
be interchanged.

Section 2 spells out the teleport annealing algorithm based on these ideas.
Next, Section 3 provides simulations to compare the algorithm to Metropolis-
Hastings sampling in a generic context. Section 4 provides an example of the
algorithm using Gibbs sampling with internal annealing to approximate the
posterior in Gaussian mixture modeling. Finally, in Section 5 we discuss prac-
tical issues and indicate how teleport annealing might yield provable statistical
guarantees in some contexts.
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2 The algorithm

Let p : V → R be a probability density with respect to µ, and suppose that q is
proportional to p.

The first task is to devise a wt such that w0 is a probability density with
respect to µ that can be sampled exactly and w1 = q. Additionally, the loga-
rithm of wt must be differentiable for each v ∈ V. Define pt := wt∫

V wt(v)dµ(v)
.

Draw M elements independently according to w0 (which equals p0) to serve
as initializations for M separate chains. For each chain, calculate the deriva-
tive with respect to t of logwt at that chain’s current location. Evaluate these
M functions at t = 0, compute the average of these M quantities, then sub-
tract that average from each of the quantities. The result is an estimate of
the chains’ δ quantities [defined in (1)] at t = 0. Each chain should be kept
as is with probability .5 plus h times that chain’s estimated δ; otherwise, the
chain’s value should be overwritten with the value of another chain that is cho-
sen uniformly at random. The new values represent the chains at time t = h.
Continue to alternate between estimating δ values and teleporting chains until
t = 1, while inserting MCMC steps along the way to weaken dependence among
chains and to counteract the error that arises from the approximation (1) and
from estimating the expected derivative of logwt.

With 1/h ∈ N, the algorithm can be stated more formally as follows.

Algorithm 1: Teleport annealing

t← 0;

generate V
(0)
1 , . . . , V

(0)
M

iid∼ w0;
while t < 1 do

for i in {1, . . .M} do
di ← ∂

∂τ logwτ (V
(t)
i ) evaluated at t;

d̄← 1
M

∑
i di;

for i in {1, . . .M} do
δ̂ ← di − d̄;
generate U ∼ Unif[0, 1];

if U ≤ .5 + hδ̂ then

V
(t+h)
i ← V

(t)
i ;

else
generate Z uniformly from {1, . . . , i− 1, i+ 1, . . . ,M};
V

(t+h)
i ← V

(t)
Z ;

take MCMC steps toward pt with each chain;
t← t+ h;

return V
(1)
1 , . . . , V

(1)
M

Next, we will describe two specific instances of the algorithm and see how
they perform in simulations.
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3 Use with Metropolis-Hastings sampling

Let q be proportional to a target density p. Define wt := f1−tqt where f is a
density that can be easily sampled.1 Then w0 = f and w1 = q. A simulated
annealing version of Metropolis-Hastings would draw an initializer according to
f , then gradually increase t from 0 to 1 while taking steps with probability equal
to the ratio of proposed points’ wt values to current points’ wt values.

For teleport annealing, the following quantity is needed to calculate telepor-
tation probabilities.

∂
∂t logwt = log q − log f

Let us demonstrate by sampling from a “spiraling” Gaussian mixture in Rd
with density proportional to

q(x) =

d∑
j=1

je
− 1
d2/18

‖x−jej‖2 . (2)

where ej represents the jth canonical basis unit vector.2 Notice that the weights
increase as the components spiral outward. This example is designed to be
challenging for ordinary MCMC methods: we will initialize with N(0, d/2), so
initialization points will land in the low-mass modes more often than they land
in the high-mass modes. As a result, a disproportionate number of chains are
likely to get caught in low-mass modes. We will see if teleport annealing can
overcome the problem.

The teleport annealing with have 10, 000 chains, use h = .01, and take at
each time increment, one teleportation step followed by one Metropolis-Hastings
step. Another 10, 000 ordinary Metropolis-Hastings chains will also follow an an-
nealing path. The only difference between these two algorithms is the inclusion
of a teleportation step. We also perform an addition run Metropolis-Hastings
for 400 steps from t = 0 to t = 1 rather than 100 in order to approximately
equalize the time taken by teleport annealing and ordinary Metropolis-Hastings
annealing. The size of Metropolis-Hastings proposal move is s times N(0, Id),
and we will look at a range of s values.

To compare the algorithms, we calculate the proportion of the 10, 000 chains
that end up closest to each component mean. This is approximately the pro-
portion of chains that have ended up stuck in that mode.

For dimension 2, Figure 1 shows a true sample, a teleport annealing sam-
ple with 100 annealing steps, a Metropolis-Hastings sample with 100 annealing
steps, and a Metropolis-Hastings sample with 400 annealing steps, the latter
three algorithms using s = 1. (For visual clarity, only 500 out of the 10, 000
chains are plotted.) Boxplots in Figure REF show the results of 40 replications
of this experiment; it indicates that teleport annealing tends to have about

1The family of distributions proportional to wt is the one-dimensional exponential family
that passes through f and p.

2Of course, it is easy to sample from this mixture directly.
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the right number of chains in each mode, while ordinary Metropolis-Hastings
without teleporting puts too few chains in the larger mode. When Metropolis-
Hastings takes extra steps to run for as long as teleport annealing, it improves
but still falls short.

More generally, we quantify the mismatch between each sample and the
true component weights of approximately 1∑d

j=1 j
(1, . . . , d) by calculating a χ2-

statistic. For each s ∈ {.5, 1, 1.5, 2, 2.5}, the experiment is repeated forty times
with d ∈ {2, 3, 4}, and the quartiles of the results are plotted in Figure REF. The
χ2-statistic quartiles for true samples of size 10, 000 are included as a baseline
for comparison.

4 Use with Gibbs sampling

Consider the k-component Gaussian mixture model in which each component
has covariance σ2Id. With data modeled as iid, the likelihood can be written
as a sum of kn product terms.

n∏
i=1

pθ(Xi) ∝
n∏
i=1

k∑
j=1

e−
1

2σ2 ‖Xi−µj‖2

=
∑
v∈V

n∏
i=1

e−
1

2σ2 ‖Xi−µvi‖
2

=
∑
v∈V

k∏
j=1

e−
1

2σ2 [nv,j‖µj−Xv,j‖2+
∑
i:vi=j

‖Xi−Xv,j‖2]

where V = {1, . . . , k}n indexes the set of all kn possible assignments of labels,
v = (v1, . . . , vn) denotes a labeling by having each vi ∈ {1, . . . , k}, nv,j denotes
the number of observations that labeling v assigns to to label j, and Xv,j is the
mean of the observations with label j according to labeling v.

In a Bayesian analysis with independent Normal priors µj ∼ N(αj ,
σ2

βj
Id),
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Figure 1: A sample of size 10, 000 was taken from the spiraling Gaussian mixture
(2). Another 10, 000 draws were generated using teleport annealing with 100
annealing steps, Metropolis-Hastings with 100 annealing steps, and Metropolis-
Hastings with 400 annealing steps. For each method, the proportion of points
closer to each mode is reported, and 500 of the points are plotted.
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the posterior can be represented as a Gaussian mixture with kn components.

k∏
j=1

e−
βj
2σ2 ‖µj−αj‖2

n∏
i=1

pθ(Xi) ∝
∑
v∈V

k∏
j=1

e−
1

2σ2 [nv,j‖µj−Xv,j‖2+
∑
i:vi=j

‖Xi−Xv,j‖2+βj‖µj−αj‖2]

=
∑
v∈V

 k∏
j=1

1
(βj+nv,j)d/2

e
− 1

2σ2 [
βjnv,j
βj+nv,j

‖Xv,j−αj‖2+
∑
i:vi=j

‖Xi−Xv,j‖2]


︸ ︷︷ ︸

w(v)

×

 k∏
j=1

(βj + nv,j)
d/2e−

(βj+nv,j)
2σ2 ‖µj−µ̃v,j‖2


︸ ︷︷ ︸

fv(θ)

(3)

with µ̃v,j :=
βj

βj+nv,j
αj +

nv,j
βj+nv,j

Xv,j . A draw from (3) would be achieved by

drawing a labeling according to the weights proportional to {w(v) : v ∈ V} then
drawing θ = (µ1, . . . , µk) from the Gaussian density proportional to fv.

We will use a parallel annealing path sampling algorithm to guide weights
toward those in (3). First, we need to devise a time-parameterization. In order
to be able to do appropriate Gibbs sampling along the way, we use an internal
annealing approach. Consider the family of Gaussian mixture models with
density proportional to

p
(t)
θ (Xi) =

k∑
j=1

e−
1

2σ2 [(1−t)‖Xi‖2+t‖Xi−µj‖2].

As in (3), we express the resulting posterior as a mixture

k∏
j=1

e−
βj
2σ2 ‖µj−αj‖2

n∏
i=1

p
(t)
θ (Xi) ∝

∑
v∈V

k∏
j=1

e−
1

2σ2 [tnv,j‖µj−Xv,j‖2+t
∑
i:vi=j

‖Xi−Xv,j‖2+βj‖µj−αj‖2]

=
∑
v∈V

 k∏
j=1

1
(βj+tnv,j)d/2

e
− 1

2σ2 [
βjtnv,j
βj+tnv,j

‖Xv,j−αj‖2+t
∑
i:vi=j

‖Xi−Xv,j‖2]


︸ ︷︷ ︸

wt(v)

×

 k∏
j=1

(βj + tnv,j)
d/2e−

(βj+tnv,j)
2σ2 ‖µj−µ̃(t)

v,j‖
2


︸ ︷︷ ︸

f
(t)
v (θ)

with µ̃
(t)
v,j :=

βj
βj+tnv,j

αj +
tnv,j

βj+tnv,j
Xv,j . At t = 1, this is equal to the target

distribution (3), while at t = 0 it assigns equal probability to all labelings which
makes it easy to initialize.
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Our algorithm begins by drawing M uniformly random labelings for the
data, which will serve as the chains’ initializations. For each chain, we calculate
the t = 0 version of

∂
∂t logwt(v) = −

k∑
j=1

d
2

nv,j
βj + tnv,j

+
1

2σ2

βjnv,j
(βj + tnv,j)2

‖Xv,j − αj‖2 +
1

2σ2

∑
i:vi=j

‖Xi −Xv,j‖2
 .

(4)

We then estimate the expectation of this quantity by averaging these values over
the M chains. For each labeling v and time t, let δ̂v(t) denote (4) minus the
average. Ideally, h is small enough that .5 times the largest absolute value of
δ̂v(t) is no greater than .5, so that the coin-flips of Theorem 1.1 will be possible.

For each chain, generate a coin-flip with heads probability .5 + hδ̂v(t) where v
is the labeling of the chain in question. If heads, then leave the chain alone.
If tails, then the labeling of this chain is replaced by the current labeling of
another chain chosen uniformly at random from the M − 1 others.

Since hδ̂v(t) is only an estimate of an approximation of the required quantity
from Theorem 1.1, we will intermittently follow teleportation steps with steps
of Gibbs sampling to move the distribution of labels and parameters closer to
the time t version of the posterior. Given a labeling v, the Gibbs sampling
procedure draws independent Gaussian component means according to the den-

sity proportional to f
(t)
v . Then given component means, the label for the ith

observation is assigned to label j with probability

e−
1

2σ2
t‖Xi−µj‖2∑k

j′=1 e
− 1

2σ2
t‖Xi−µj′‖2

.

These Gibbs sampling steps also help weaken the dependence among the chains.
This algorithm is used in [Brinda, 2018, Chap 5] to provide initializers to

EM for optimizing log likelihood. HOW did it do in the simulations?

5 Discussion

-importance.
-implications for other problems including function estimation.
-more analysis and hopefully statistical guarantees will be in a future paper.
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