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A central aspect of measure theory is the extension of non-negative countably
additive set functions (known as premeasures) to larger domains. A σ-finite
premeasure µ defined on a semi-algebra has a unique extension to a measure
on the σ-algebra generated by its domain, by the Carathéodory construction
[Bogachev, 2007, Prop 1.3.10].1 An interpretation of this in terms of real-world
modeling is that the premeasure is a state of knowledge of a substance’s mass
on certain sets; the substance’s mass on some other sets can be inferred by the
nature of mass, that is, non-negativity, countable additivity, and the assumption
that emptiness has zero mass. What about a set A that is not in the completion
of the σ-algebra generated by the original domain? We may not be able to infer a
mass that it must have, but we can still exclude some values. Any value strictly
less than its µ-induced inner measure (supremum of masses of its subsets) should
be considered unreasonable, as should any value strictly larger than its outer
measure (infimum of masses of its supersets). In fact, if the outer measure of A
is finite, then given any value z between the inner and outer measure of A there
exists an extension of µ to a measure on the σ-algebra generated by the original
domain and A that assigns a measure of z to A [Bogachev, 2007, Thm 1.12.14].
It is sensible to conclude that any value in that range might be the “true” mass
of A. This reasoning seems preferable to an insistence that conditions must be
imposed to avoid the possibility of “unmeasurable” sets.

This line of thinking can be implemented in a simpler and more powerful
way than one might expect. Let µ be a premeasure on Ω with domain Σ, and let
f be a function on Ω. Suppose A ⊆ 2Ω is at least fine enough that f is σ(Σ∪A)-
measurable. We define the hypothetical measure (we will say hypomeasure, for
short) µAf to be an indexed family where the indices are extensions of µ to
σ(Σ ∪ A) and each such extension indexes the integral of f according to that
measure.2 One might prefer to omit the superscript by letting A be σ-algebra
generated by f by default, or more generally letting A be the union of the σ-
algebras generated by the functions that are to be integrated in the statement
at hand. It is appropriate that this results in the hypomeasure notation being
indistinguishable from the ordinary integral, because the hypomeasure extends
the concept of integral: when f is Σ-measurable, the hypomeasure µσ(f)f is
constant (equal to its ordinary integral’s value) and can be treated as such.

1A measure has a unique extension to its completion, also via Carathéodory construction.
And integration is a unique extension of the domain from indicator functions to measurable
functions [Pollard, 2002, Sec 2.3].

2Our notation is intended to resemble (and extend) the de Finetti notation for integrals.
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The facts and operations that are valid for ordinary measures continue to
hold point-wise for hypomeasures. By proceeding as if every function were
measurable, one produces equations and inequalities that hold point-wise, where
the points are the extensions of µ.

Somewhere, include a sentence that points out the analogy to conditional
probabilities and sub-σ-algebras. (in a footnote?)

To see why this approach is more powerful than just calculating inner and
outer measures, consider the following simple example. Let f1 be the indicator
function of an unmeasurable set A, and let f2 be 2 times the indicator function
of A. Suppose A has inner measure 0 and outer measure 1. Then one cannot
compare the integrals of f1 and f2 by comparing by their inner/outer measure
ranges, which are [0, 1] and [0, 2] respectively. However, the hypomeasures ap-
proach allows us to unhesitatingly assert that the “integral” of f1 is no greater
than the “integral” of f2, regardless of what the masses of currently unknown
sets turn out to be.

The hypomeasures approach greatly simplifies our work by allowing us to
treat every function as measurable.3 Measurability only becomes relevant to
follow-up questions regarding the range of a hypomeasure. If the σ-algebra
generated by f is a subset of the µ-completion of the domain of µ, then the µ-
hypomeasure of f is constant, being everywhere equal to the ordinary integral
of f according to the completion of µ. Measurability of f by the completion
of µ is necessary and sufficient for this constancy when µ is a finite measure
[Halmos, 1974, Thm 14.F]. and what about an infinite measure?

Another follow-up question is perhaps concerning: do there exist any ex-
tensions of µ that can measure f? If so, we will call f compatible with µ. An
extension to a finite or disjoint collection of sets is guaranteed to exist; see
Proposition 1 below. However, incompatibility is possible; indeed, assuming
Zorn’s Lemma, no atomless measure can exist on a power set [Troitskii, 1994,
Theorem 5]. Even a countable collection of sets has been devised that is incom-
patible with Lebesgue measure, assuming the continuum hypothesis [Bogachev,
2007, Cor 3.10.3].4 However, such pathological functions are unusual in practice,
so we suggest that a “presumption of innocence” is sensible. Furthermore, real-
ize that there is nothing mathematically illegitimate about incompatible cases;
they produce identities and inequalities that are vacuously true point-wise as
there are not any points to check.5

3The hypomeasure idea is fairly straight-forward and has likely been discussed before some-
where.

4To clarify, the Vitali sets are not the example that we are referring to. It is easy to
extend Lebesgue measure to include the Vitali sets, as they are disjoint [Bogachev, 2007,
Thm 1.12.5]. The significance of the Vitali sets was that they demonstrated that there is no
translation-invariant extension.

5Careful not to be misled, though. Consider [Mattner, 1999, Sec 2.2] in which a non-
negative integrand produces different results depending on the order of integration. Recall
that Tonelli’s Theorem requires product-measurability, which fails in Mattner’s example. We
can conclude that there is no extension of the measure for which the integrand is measurable;
otherwise, Tonelli would apply and the iterated integrals would be valid. Thus, this is a case
in which the hypomeasure has an empty domain.
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When convenient, one can instruct the reader to interpret “integrals” as
hypomeasures. In this way, identities and inequalities proven are mathematically
legitimate regardless of measurability, and they are also realistically meaningful
except in the pathological cases of incompatibility.

Proposition 1 Let S ⊆ 2Ω be a semi-ring of subsets of Ω, and let
µ : S → R+ be countably additive with µ ∅ = 0. Let A be a collection of subsets
of Ω. If all but finitely many of the sets in A are disjoint, then there exists an
extension of µ to a measure with domain σ(S ∪ A).

Proof. I’m pretty sure the statement is true. Much of it is standard material
from probability theory that we just need to point to sources for. And the exis-
tence of extension to A for arbitrary measures seem like they might follow easily
from the extension results for finite measures stated in Bogachev. The more in-
teresting question is whether we can weaken the semi-ring part. A semi-ring is
just the right amount of structure for which there exists a unique extension to
a σ-algebra. If you just want to ensure the existence of some extension, can you
use an even weaker type of collection? If it turns out that there is a weaker type
of collection that is guaranteed to have an extension to a σ-algebra, then the
result should be broken up into two propositions.
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