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Abstract

We clarify that Hölder’s inequality can be stated more generally than is often re-

alized. This is an immediate consequence of an analogous information-theoretic

identity which we call Hölder’s identity. We also explain Andrew R. Barron’s

original use of the identity.
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1. Introduction

Hölder’s inequality is most commonly written

∫
|f(y)g(y)|dµ(y) ≤ ‖f‖p‖g‖q (1)

for conjugate exponents p and q. An alternative way of expressing this is to say

that for any pair of non-negative functions f and g and any α ∈ [0, 1],

∫
fα(y)g1−α(y)dµ(y) ≤

(∫
f(y)dµ(y)

)α(∫
g(y)dµ(y)

)1−α

. (2)

In other words, the integral of the point-wise geometric average of two functions

is bounded by the geometric average of their integrals.
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In Section 2, we point out that (2) holds for arbitrary geometric expectations

as long as µ is σ-finite. We also clarify a few points of confusion that have arisen5

regarding this more general inequality; a number of papers have stated the result

without σ-finiteness or purported to prove it with Jensen’s inequality. The

section concludes with Hölder’s identity quantifying the ratio of the two sides

of Hölder’s inequality. Next, Section 3 describes the compensation identities,

two decompositions of expected relative entropy between a random probability10

measure and a fixed probability measure. These identities both resemble the

bias-variance decomposition, and one of the variance-like terms that arises is

exactly the natural logarithm of the ratio between the two sides of Hölder’s

inequality.

Proofs and additional discussion are provided in a supplement to this pa-15

per. Every result that is labeled Theorem or Lemma is proven in Section A,

while results labeled Corollary are explained informally before being stated.

Section B recalls the context of the original paper that presented a version of

Hölder’s identity which arose in an analysis of the relative entropy from the

Bayesian posterior distribution to a particular approximation of that distribu-20

tion. Section C works out the proof of the generalized Hölder’s inequality that is

indicated by [5] to verify that it requires σ-finiteness of µ. Finally, in Section D

we use Jensen’s inequality to give a general version of Hölder’s inequality that

doesn’t require σ-finiteness, although it does use an integrability condition that

was not needed in our σ-finite version.25

2. Generality of Hölder’s inequality

Equation (2) holds for arbitrary geometric expectations over a random ele-

ment indexing functions.

Theorem 2.1 (Hölder’s inequality). Let X and Y be measurable spaces, and
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let f : X × Y → R+ be product measurable. For any σ-finite measure µ on Y

and any X -valued random element X,

∫
eE log f(X,y)dµ(y) ≤ eE log

∫
f(X,y)dµ(y).

Inequalities (1) and (2) represent the two-point distribution version of The-

orem 2.1. The generalization for an arbitrary finite measure on X is easy to30

derive by normalizing and then applying the result for probability measures.

Corollary 2.2. Let X and Y be measurable spaces, and let f : X ×Y → R+ be

product measurable. For any σ-finite measure µ on Y and finite measure γ on

X ,

∫
e
∫

log f(x,y)dγ(x)dµ(y) ≤ e
1

γ(X)

∫
[log

∫
f(x,y)γ(X)dµ(y)]dγ(x).

Using ef as the function in Theorem 2.1, and taking the log of both sides

gives us an equivalent inequality that is also worth stating.

Corollary 2.3. Let X and Y be measurable spaces, and let f : X × Y → R be

product measurable. For any σ-finite measure µ on Y and any X -valued random

element X,

log

∫
eEf(X,y)dµ(y) ≤ E log

∫
ef(X,y)dµ(y).

The fact that Hölder’s inequality holds in this generality is perhaps not

widely known. For example, [8] proved an extension of Hölder’s inequality to35

countable products assuming µ is σ-finite; that result was improved by [3, Thm

2.11]. The inequalities they present are readily subsumed by Corollary 2.2 by

letting γ concentrate on a countable set.

[7, Lemma 1] states our Corollary 2.3, but the justification presented there
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is not quite adequate. They observe, using the two-point distribution version of40

Hölder’s inequality, that the mapping f 7→ logµ ef is convex on the space of real-

valued functions on a set. [Pettis] expectations commute with continuous affine

functionals, and Jensen’s inequality relies on the expectation commuting with

a continuous affine functional tangent to the convex function. The existence

of a tangent continuous affine functional is guaranteed for convex functions on45

finite-dimensional spaces, but not on infinite-dimensional spaces. (As a simple

example, consider any discontinuous linear functional; it is convex, but it has no

continuous affine functional tangent to it. For a more concrete example, see [10,

Introduction].) If adequate care is taken, the logic of Jensen’s inequality can be

applied to this problem as we show in Section D; there, we prove a variant of50

Hölder’s identity that does not require σ-finiteness.

[7] reference [14] where the inequality in our Theorem 2.1 is stated and

called generalized Hölder’s inequality ; he points to the classic text [5, VI.11 Ex

36] where it is left as an exercise. Although that exercise does not say to assume

σ-finiteness, the proof they hint at does require it — see Section C. For σ-finite55

measures, at least, the proof can follow a different route from the one they hint

at. We establish an identity that has an information-theoretic interpretation

involving a non-negative “variance” functional Ṽ for random probability mea-

sures which will be defined and explained in Section 3. For now, suffice it to

say that Ṽ represents an expected relative entropy.60

Theorem 2.4. Let X and Y be measurable spaces, and let f : X × Y → R be

product measurable. Let µ be a σ-finite measure on Y, and let X ∼ P be an

X -valued random element. If
∫
ef(x,y)dµ(y) is in (0,∞) P -almost surely and

E log
∫
ef(X,y)dµ(y) > −∞, then

E log

∫
ef(X,y)dµ(y)− log

∫
eEf(X,y)dµ(y) = ṼQX
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where Qx has density qx(y) := ef(x,y)∫
ef(x,y)dµ(y)

with respect to µ.

Corollary 2.5 (Hölder’s identity). Let X and Y be measurable spaces, and let

f : X × Y → R+ be product measurable. Let µ be a σ-finite measure on Y,

and let X ∼ P be an X -valued random element. If
∫
f(x, y)dµ(y) is in (0,∞)

P -almost surely and E log
∫
f(X, y)dµ(y) > −∞, then

eE log
∫
f(X,y)dµ(y)∫

eE log f(X,y)dµ(y)
= eṼQX

where Qx has density qx(y) := f(x,y)∫
f(x,y)dµ(y)

with respect to µ.

An interpretation of ṼQX will be informed by the “reverse compensation

identity” which we describe in the coming section.

In the special case that X only takes two possible values, ṼQX is an unnor-65

malized Rényi divergence Dλ between the two possible distributions, as defined

in Section 3.

Theorem 2.6. Let Y be a measurable space, and let f : Y → R+ and g : Y →

R+ have finite positive µ-integrals. Then

[∫
f(y)dµ(y)

]λ [∫
g(y)dµ(y)

]1−λ∫
fλ(y)g1−λ(y)dµ(y)

= eDλ(Q‖R)

where Q has density f(y)∫
f(y)dµ(y)

and R has density g(y)∫
g(y)µ(y)

with respect to µ.

3. The compensation identities

Theorem 3.1, called the compensation identity by [16, Thm 9.1], conveniently70

decomposes the expected relative entropy from a random probability measure

to a fixed probability measure.1

1In Theorem 3.1 and throughout the remainder of this paper, lower-case and upper-case
letters implicitly pair probability measures with their densities.
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Theorem 3.1 (The compensation identity). Let {qx : x ∈ X} be a family

of probability densities with respect to a σ-finite measure µ, and suppose that

(x, y) 7→ qx(y) is product measurable. Let X ∼ P be an X -valued random

element. For any probability measure R on Y,

ED(QX‖R) = D(Q̄P ‖R) + ED(QX‖Q̄P )

where Q̄P represents the P -mixture over {qx} with density

q̄P (y) =

∫
qx(y)P (dx).

A less familiar decomposition, which we will call the reverse compensation

identity, holds when the expected relative entropy’s second argument is random

rather than its first. Instead of a mixture, it involves a geometric-mixture.2

We define the P -geometric mixture of {qx} to be the probability measure with

density

q̃P (y) :=
eEX∼P log qX(y)∫

eEX∼P log qX(y)dµ(y)
.

Jensen’s inequality and Tonelli’s theorem together provide an upper bound for

the denominator.

∫
eE log qX(y)dµ(y) ≤ E

∫
elog qX(y)dµ(y) = 1.

This integral can be zero, however, in which case the geometric-mixture is not

well-defined.3

2What we call a “geometric mixture” is sometimes called a “log mixture” or “log-convex
mixture,” for instance by [6, Sec 19.6].

3An example of such a pathological case is when qX has positive probabilities on two
densities that are mutually singular.
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Theorem 3.2 (The reverse compensation identity). Let {qx : x ∈ X} be a

family of probability densities with respect to a σ-finite measure µ, and suppose

that (x, y) 7→ qx(y) is product measurable. Let X ∼ P be an X -valued random

element. If
∫
eE log qX(y)dµ(y) > 0, then for any probability measure R on Y,

ED(R‖QX) = D(R‖Q̃P ) + ED(Q̃P ‖QX)

where Q̃P represents the P -geometric mixture over {qx}.75

A two-point distribution version of Theorem 3.2 is implied by [4, Eq (3) with

(4)] and similarly for any finite set of discrete distributions by [17, Equation (9)].

Theorems 3.1 and 3.2 are perfectly analogous to the bias-variance decompo-

sition for Hilbert-space-valued random vectors.4 The expected divergence from

a random element to a fixed element decomposes into the divergence from a

“centroid” of the random element to that fixed element plus the internal vari-

ation of the random element from that centroid.5 We suggest a notation that

makes use of this intuition:

V̄QX : = inf
R

ED(QX‖R)

= ED(QX‖Q̄P )

4In fact, the compensation identity and bias-variance decomposition are both instances of
this decomposition for Bregman divergences — see [15, Lem 3.5] and [12].

5It follows that the centroid is the choice of fixed element that has the smallest possible
expected divergence from the random element.
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and6

ṼQX : = inf
R

ED(R‖QX)

=


ED(Q̃P ‖QX), if

∫
eE log qX(y)dµ(y) > 0

∞, otherwise.

Roughly speaking, V̄QX represents the smallest possible expected code-

length redundancy one can achieve when the coding distribution is the random

QX ; to achieve it, one sets the decoding distribution to be Q̄P . On the other80

hand, ṼQX represents the smallest possible expected code-length redundancy

when the decoding distribution is the random QX ; to achieve it, one sets the

coding distribution to be Q̃P .

It is interesting to note that two-point distribution versions of these variance-

like quantities are often used as divergences. The Jensen-Shannon divergence

between probability measures Q and R is V̄ of the random probability measure

that takes values Q and R each with probability 1/2.

DJS(Q,R) := 1
2D
(
Q‖Q+R

2

)
+ 1

2D
(
R‖Q+R

2

)

Unnormalized Bhattacharyya divergence7 is the Ṽ analogue:

DUB(Q,R) = 1
2D
( √

qr

µ
√
qr‖q

)
+ 1

2D
( √

qr

µ
√
qr‖r

)

where q and r are densities of Q and R with respect to µ, and µ
√
qr is short-hand

for
∫ √

q(y)r(y)dµ(y) using de Finetti notation.8 The derivation is straight-85

6This alternative representation of Ṽ is justified by Lemma A.4.
7This terminology is borrowed from [6, Eq (19.38)].
8The de Finetti notation writes measures like ordinary functionals that can be applied

to measurable functions; it is summarized and advocated in [13, Sec 1.4]. We will use this
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forward using the definition DUB(Q,R) := log 1
µ
√
qr , but it is more easily seen

via Lemma A.3. Unnormalized Rényi divergence is a generalizationDλ(Q‖R) :=

log 1
µ qλr1−λ

, and a random distribution that takes values Q with probability λ

and R with probability 1− λ has a Ṽ of Dλ(Q‖R).

Information theorists have observed “Pythagorean” identities involving in-90

formation projections and reverse information projections [4, Theorem 3]. Those

identities are analogous to the Pythagorean identity in Euclidean space Rn,

whereas the compensation identities are analogous to the bias-variance decom-

position which is itself an instance of the Pythagorean theorem applied in the

L2-space of Rn-valued random vectors that have finite expected squared norms.95

The information projection identities tell us about projecting within the space

of fixed probability measures, while the compensation identities tell us how to

project from the space of random probability measures onto the subset of fixed

probability measures. To be more specific, the information projection identities

highlight the roles of linear and geometric paths in the space of fixed probability100

measures, while the compensation identities reveal that the importance of linear

and geometric paths extends to the space of random probability measures.
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Supplementary material

A. Proofs

It is known that relative entropy can be expressed in terms of a non-negative

integrand. This fact enables us to use Tonelli’s theorem to justify interchanges150

in the order of integration.

Lemma A.1. Let {qx : x ∈ X} and {rx : x ∈ X} be families of probability

densities with respect to a σ-finite measure µ, and suppose that both (x, y) 7→

qx(y) and (x, y) 7→ rx(y) are product measurable. For any X -valued random

element X,

Eµ qX log
qX
rX

= µEqX log
qX
rX

.

Proof. We use the fact that log z ≤ z − 1, then invoke Tonelli’s theorem.

Proof of Theorem 3.1. Lemma A.1 justifies changing the order of integration.

ED(QX‖R) = Eµ qX log
qX
r

= EQX log
q̄P
r

+ EQX log
qX
q̄P

= µ EqX︸︷︷︸
q̄P

log
q̄P
r

+ ED(QX‖Q̄P )

Lemma A.2. Let {qx : x ∈ X} be a family of probability densities with respect

to a σ-finite measure µ, and suppose that (x, y) 7→ qx(y) is product measurable.

Let X ∼ P be an X -valued random element. If µ eE log qX > 0, then for any

1



probability measure R on Y,

ED(R‖QX) = D(R‖Q̃P ) + log
1

µ eE log qX
.

Proof. Making use of the central trick from the explanations of the mean field

approximation algorithm (e.g. [9]), we have

ED(R‖QX) = ER log
r

qX

= RE log
r

qX

= R[log r − E log qX ]

= R[log r − log eE log qX ]

= R log
r

eE log qX

= R log
r

eE log qX/µ eE log qX
+ log

1

µ eE log qX
.

Again, Lemma A.1 justifies the order interchange.

Lemma A.3. Let {qx : x ∈ X} be a family of probability densities with respect

to a σ-finite measure µ, and suppose that (x, y) 7→ qx(y) is product measurable.

Let X ∼ P be an X -valued random element. If µ eE log qX > 0, then

ED(Q̃P ‖QX) = log
1

µ eE log qX
.

Proof. Use Q̃P as R in Lemma A.2.155

Proof of Theorem 3.2. Combine Lemmas A.2 and A.3.
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Proof of Theorem 2.4. We will write f(X, ·) as fX . The key is Lemma A.3.

logµ eEfX = logµ eE log[efX /µ exp fX ] + E logµ efX

= −ED(Q̃P ‖QX) + E logµ efX

if the geometric mixture is well-defined.

Next, assume that the geometric mixture is not well-defined; in other words,

µ eE log(efX /µ efX ) = 0. Because the integrand is non-negative, the integral can

only be zero if the integrand is zero µ-almost everywhere. This requires the160

exponent, which simplifies to E[fX − logµ efX ], to be −∞ almost everywhere.

Assume that there exists a non-negligible set for which EfX > −∞. Then on

that set, E[fX − logµ efX ] can only be −∞ if E logµ efX is ∞. Furthermore,

the contribution of that non-negligible set ensures that logµ eEfX is also strictly

greater than −∞, which tells us that the two sides of the proposed identity are165

both ∞.

In the one remaining case, the geometric mixture does not exist and EfX =

−∞ almost everywhere. These imply that VQX = ∞ and logµ eEfX = −∞,

respectively. The theorem specifies that E logµ efX > −∞, so again the identity

reduces to ∞ =∞.170

An interesting observation is implicit in the above proof: E logµ efX = −∞

is only possible if EfX = −∞ almost everywhere.

A closely related derivation in [2, Sec 4] was instructive; the accompany-

ing discussion in that paper provides another interpretation of the quantities

involved in Hölder’s identity. Barron’s approach is explained in Section B.175

Proof of Theorem 2.1. When its conditions are met, Hölder’s identity (Theo-

rem 2.5) implies the desired inequality result by non-negativity of Ṽ.

For a variant that does not require σ-finiteness, see Section D.
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Proof of Theorem 2.6. Define the product measurable function hx(y) with x

taking values in X = {1, 2} with h1(y) = f(y) and h2(y) = g(y). By the defi-180

nition of unnormalized Renyi divergence, Ṽ of the random distribution is equal

to Dλ(Q‖R) according to Lemma A.3. Therefore, the desired result is a direct

consequence of Holder’s identity, at least when µ is σ-finite. However, we de-

liberately omitted the σ-finiteness requirement. In fact, the reason we required

σ-finiteness in previous Lemmas and Theorems was to justify interchanges in185

the order of integration. When one of the integrals concentrates on a finite set

of atoms, then interchange is always valid by linearity of integration. Indeed,

when X is finite, the Lemmas and Theorems of this paper are valid without

the condition that µ is σ-finite. Alternatively, the sum of any finite collection

of probability measures is itself a finite dominating measure for each of their190

densities.

Lemma A.4. Let {qx : x ∈ X} be a family of probability densities with respect

to a σ-finite measure µ, and suppose that (x, y) 7→ qx(y) is product measurable.

Let X be an X -valued random element. If µ eE log qX = 0, then for any probability

measure R, ED(R‖QX) =∞.195

Proof. The integrand of µ eE log qX is non-negative, so the integral being zero

implies that E log qX = −∞ µ-almost everywhere. Since µ dominates R, the

condition also holds R-almost everywhere.

By Lemma A.1,

ED(R‖QX) = RE log
r

qX

= R [log r − E log qX ].

Our previous observation tells us that µ eE log qX = 0 implies that the integrand

log r − E log qX equals ∞ with R-probability 1, so ED(R‖QX) =∞.200
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B. A Bayesian approach

Let us now establish a connection between our approach and that of [2, Sec

4]. Suppose qθ(x) = q(x|θ), θ ∈ Θ is a family of densities dominated by a

measure λ and µ(dθ) is a prior probability distribution on Θ, reflecting our a

prior knowledge toward Θ.205

Then given n data points Xn drawn independently from the product dis-

tribution Pn(Xn) =
∏n

P (Xi) with density pn(Xn) =
∏n

p(Xi) (p is also

dominated by λ), the Bayes estimator is the posterior mixture density,

p̂n(x) =

∫
q(x|θ)µn(dθ|Xn),

which according to Bayes’ rule is the predictive density

p̂n(x) =
mn+1(Xn, x)

mn(Xn)
,

where210

mn(x1, . . . , xn) =

∫
(

n∏
qθ(xi))µ(dθ).

Define a new distribution on Θ via

µ∗n(dθ) =
e−nDn(θ)µ(dθ)

cn
,

where Dn(θ) = (1/n)D(pn||qn(·|θ)) and cn =
∫
e−nDn(θ)µ(dθ). Let L∗n be the

product distribution for Xn and θ defined by

L∗n(dθ, dxn) = Pn(dxn)µ∗n(dθ).

Then L∗n is an approximation (or surrogate distribution) to the Bayesian joint
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law for Xn and θ, mainly

LBayes
n (dxn, dθ) = Qn(dxn | θ)µ(dθ).

The Bayesian law LBayes
n has a joint density function qn(xn | θ) with respect

to the product measure λn×µ; on the other hand, the approximation L∗n has a

density function pn(xn)e−nDn(θ)/cn. Thus

D(L∗n||LBayes
n ) = E log

pn(Xn)e−nDn(θ)/cn
qn(Xn|θ)

.

[2, Sec 4, p. 21] then argues using Fubini’s theorem (integrating first with

respect to Pn and then with respect to µ∗n) that

D(L∗n||LBayes
n ) = E log

pn(Xn)e−nDn(θ)/cn
qn(Xn|θ)

= E
[
log

pn(Xn)

qn(Xn|θ)
− nDn(θ) + log(1/cn)

]
= nDn(θ)− nDn(θ) + log(1/cn)

= log(1/cn)

= − log

∫
e−nDn(θ)µ(dθ).

Continuing, by the chain rule for relative entropy,

D(L∗n||LBayes
n ) = D(pn||mn) + E(D(µ∗n||µ(·|Xn))).

Thus, by nonnegativity of relative entropy,

D(pn||mn) ≤ D(L∗n||LBayes
n ) = − log

∫
e−nDn(θ)µ(dθ).

For the case that n = 1, we have
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D(pn||mn) =

∫
p(x) log

p(x)∫
qθ(x)µ(dθ)

λ(dx),

and215

− log

∫
e−nDn(θ)µ(dθ) = − log

∫
e
−
∫
p(x) log

p(x)
qθ(x)

λ(dx)
µ(dθ)

Thus, we find that

∫
p(x) log

p(x)∫
qθ(x)µ(dθ)

λ(dx) ≤ − log

∫
e
−
∫
p(x) log

p(x)
qθ(x)

λ(dx)
µ(dθ).

Rearranging and then exponentiating, we find that

∫
e
−
∫
p(x) log

p(x)
qθ(x)

λ(dx)
µ(dθ) ≤ e−

∫
p(x) log

p(x)∫
qθ(x)µ(dθ)

λ(dx)
.

If γ(dx) = pλ(dx), we have

∫
e
∫

log
qθ(x)

p(x)
γ(dx)µ(dθ) ≤ e

∫
log
(∫ qθ(x)

p(x)
µ(dθ)

)
γ(dx)

. (3)

Note that (3) is similar to (and in fact implied by) (2.1), provided f is scaled

in such a way that it may be written as the ratio of two densities.

C. Dunford and Schwartz exercise220

Theorem C.1 is a modified version of [5, VI.11 Ex 36]. We follow the route

of proof suggested by the authors of [5] in order to point out that their approach

relies on σ-finiteness.

Theorem C.1 ([5], VI.11.36). Suppose µ and µ1 are positive measures on

spaces X and Y. Assume that µX = 1 and µ1 is σ-finite. Then for any

7



µ× µ1−integrable function f : X × Y → R+,

∫
exp

(∫
log f(x, y)µ(dx)

)
µ1(dy) ≤ exp

(∫
log

(∫
f(x, y)µ1(dy)

)
µ(dx)

)
.

(4)

To prove the theorem we need to introduce some notation. Following con-

vention, we define the Lp norm of a measurable function on X to be

|g|µ,p =

(∫
|g|pµ(dx)

)1/p

,

where µ is the probability measure as in Theorem C.1. Throughout the remain-

der of this section, we will omit the dependence on the measure µ and write | · |p225

to denote the Lp norm. The following lemma characterizes the behavior of the

Lp norm as p→ 0 and is crucial in obtaining Theorem C.1.

Lemma C.2 ([5], VI.11.32). For all µ−measurable function g : X → R+,

limp→0 |g|p exists and

lim
p→0
|g|p = exp

(∫
log g(x)µ(dx)

)
=: |g|0.

Proof.

log |g|p =
1

p
log

∫
g(x)pµ(dx) ≤

∫
g(x)p − 1

p
µ(dx).

The integrand converges pointwise to log g. To show the integral converges,

notice that ∣∣∣∣gp − 1

p

∣∣∣∣ ≤ (g − 1)I{g > 1} − log gI{g ≤ 1}.

If log g is µ-integrable, we can apply dominated convergence to conclude that

limp→0 |g|p = |g|0. If
∫

log gdµ = ∞, take a sequence of truncated g and apply

monotone convergence to pass the statement to the limit.230
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Lemma C.3 ([5], VI.11.13, Generalized Minkowski inequality). Take σ-finite

measures µ, µ1 on measure spaces X and Y. Let f be a µ× µ1-integrable non-

negative function on X × Y. Then, for r > 1,

(∫ (∫
f(x, y)µ1(dy)

)r
µ(dx)

)1/r

≤
∫ (∫

f(x, y)rµ(dx)

)1/r

µ1(dy). (5)

Proof. Write the r’th power of the left-hand side of (5) as

∫ (∫
fdµ1

)(∫
fdµ1

)r−1

dµ =

∫ (∫
f(x, ỹ)µ1(dỹ)

)(∫
f(x, y)µ1(dy)

)r−1

µ(dx).

Introducing the auxiliary variable ỹ allows us to move the integral over ỹ before

the integral over x. Note that this is also the place where we have to assume

σ-finiteness of µ and µ1 to justify the change of order of integration. Apply

Hölder’s inequality to further bound the above by

∫ (∫
f(x, ỹ)rµ(dx)

)1/r

µ1(dỹ)

(∫ (∫
f(x, y)µ1(dy)

)(r−1)s

µ(dx)

)1/s

,

where s > 1 is such that 1
r + 1

s = 1. Note that (r − 1)s = r. We have proved

that the r’th power of the LHS of (5) is bounded by the RHS of (5) times the

r/s’th power of the LHS. Rearrange the terms to obtain (5).

Proof of Theorem C.1. With the two auxiliary lemmas the proof of Theorem C.1

is straightforward. By Lemma C.2, we can write the left-hand side of (4) as

∫
|f(·, y)|0µ1(dy) =

∫
lim
p→0
|f(·, y)|pµ1(dy).

Take a sequence pn → 0 to rewrite the expression above as

∫
lim inf

n→∞
|f(·, y)|pnµ1(dy) ≤ lim inf

n→∞

∫
|f(·, y)|pnµ1(dy),

9



where the inequality is obtained by Fatou’s lemma. Take r = 1/pn in Lemma C.3,

and we have ∫
|f(·, y)|pnµ1(dy) ≤

∣∣∣∣∫ f(·, y)µ1(dy)

∣∣∣∣
pn

.

Conclude that

∫
exp

(∫
log f(x, y)µ(dx)

)
µ1(dy)

≤ lim inf
n→∞

∣∣∣∣∫ f(·, y)µ1(dy)

∣∣∣∣
pn

=

∣∣∣∣∫ f(·, y)µ1(dy)

∣∣∣∣
0

= exp

(∫
log

(∫
f(x, y)µ1(dy)

)
µ(dx)

)
.

D. Jensen’s inequality in infinite-dimensional spaces235

This section shows how to use Jensen’s inequality to prove a variant of

Corollary 2.3 without requiring a σ-finite measure. A first step is to clarify

what we mean by the expectation of a random mapping to a topological vector

space. Most convenient for us is the Pettis expectation of the random mapping

considered as a random vector taking values in the function space. A Pettis240

expectation is a special case of the Pettis integral, which we now define.

Let V be a real topological vector space (rTVS), and let F be a function from

a measure space to V. We will say that a vector v ∈ V is a Pettis µ-integral

(or simply Pettis integral if the measure is clear from context) of F if for every

continuous linear functional l ∈ V ′,

µ l(F ) = l(v) (6)
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where µ on the left side refers to the Lebesgue integral with respsect to µ. If

such a vector exists, we say that F is Pettis integrable.9 We will use the symbol

E for a Pettis integral with respect to a probability measure, which we call a

Pettis expectation.245

A key aspect of Jensen’s inequality is the commutation of expectations with

continuous affine functionals. This commutation is a simple consequence of

basic facts about Pettis integrals as we review in this section. Straight-forward

proofs are described along the way.

While the Pettis integral is defined by commutation with continuous linear250

functionals, it turns out that it also commutes with all continuous linear opera-

tors. The proof of this fact can be found in [11, Thm 2.2], where Pettis integrals

were introduced.

Theorem D.1. Let U and V be rTVSs. Suppose F is a Pettis µ-integrable

U-valued function and T is a continuous linear operator from U to V. Then255

TµF is the Pettis integral of T ◦ F .

Lemma D.2. Let V be an rTVS. For any measure space, the Pettis integral is

a linear operator from the space of Pettis integrable V-valued functions to V.

Proof. Suppose F and G have Pettis integrals vF and vG. For an arbitrary

coefficient r, the Pettis integral of rF +G is rvF + vG from the linearity of the260

Lebesgue integral.

Lemma D.3. If X : Ω→ V maps every ω ∈ Ω to the same vector v ∈ V, then

its Pettis expectation is v.

Proof. Use Lemma D.2 to pass a scalar through the expectation.

9Definitions of the Pettis integral vary somewhat; ours agrees with [10].
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Based on Lemmas D.2 and D.3 along with Theorem D.1, we can conclude265

that Pettis expectations commute with continuous affine operators too.

Corollary D.4. If a is a continuous affine operator on an rTVS V, then any

Pettis integrable V-valued random vector X has Ea(X) = a(EX).

Jensen’s inequality works if the convex function has a tangent continuous

affine functional (i.e. a subdifferential) at its Pettis expectation. Let f be a

convex function and a be a satisfactory subdifferential. By the definition of

Pettis expectation and the increasing property of integrals,

f(EX) = a(EX)

= Ea(X)

≤ Ef(X).

Theorem D.5. Let X and Y be measurable spaces, and let each real-valued

function {fx : x ∈ X} be µ-integrable. Let X be an X -valued random element,

and suppose the random vector fX has Pettis expectation EfX . Then

log

∫
eEfX(y)dµ(y) ≤ E log

∫
efX(y)dµ(y).

Proof of Theorem D.5. We will use De Finetti notation for the µ-integral in this

proof.270

The Bronsted-Rockafellar theorem [1, Thm 7.60] states that a lower semi-

continuous proper convex function on a Banach space is subdifferentiable in a

dense subset of the part of its domain in which it takes finite values. L1(µ)

is a Banach space. f 7→ logµ ef is convex by Hölder’s inequality, and lower
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semicontinuity follows directly from Fatou’s lemma

lim inf
f→f0

logµ ef ≥ logµ ef0 .

The term proper means that the convex function is finite on a non-empty domain

and never equal to negative infinity. We quickly consider the non-proper cases

first. logµ fx can only be −∞ if fx is −∞ almost everywhere, but that is

impossible since each function is integrable. If logµ efx is ∞ on the entire

support of X, then the right side of the desired inequality is infinite, so it is275

trivially satisfied.

Now we consider the proper case. Let G ⊆ L1(µ) be the [dense] set where

f 7→ logµ ef has a subdifferential. We define G to be the set of translated

functions G −EfX . Let N denote the negative cone of L1(µ), that is, the set of

non-positive functions. N is closed, so G is dense in this cone as well. Let (gn)280

be a sequence of functions in G∩N that converges to zero in L1(µ). Without loss

of generality, we can assume that (gn) also converges to zero point-wise (because

every sequence that converges in L1 has a point-wise convergent subsequence).

For every n ∈ N, the random vector gn+fX has expectation gn+EfX which

is in G; Jensen’s inequality can be invoked.

logµ egn+EfX = logµ eE(gn+fX)

≤ E logµ egn+fX (7)

Take the limit superior of each side with respect to n. On the left, note that

egn+EfX ≤ eEfX which is integrable, so dominated convergence applies.

log lim supµ egn+EfX = logµ elim sup gn+EfX

= logµ eEfX

13



On the right of (7), we use two applications of the reverse Fatou lemma.

lim supE logµ egn+fX ≤ E log lim supµ egn+fX

≤ E logµ elim sup gn+fX

= E logµ efX
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