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Abstract

Given any target distribution P and any family of distributions Φ,
we show that the Hellinger approximation error of the best k-component
mixture from Φ approaches the approximation error of the best continuous
mixture over Φ at a rate of 1/

√
k. We draw on the greedy approximation

approach of Barron and Li which established 1/k rates of information
divergence approximation error but required stringent assumptions on the
family. By switching to a closely related f -divergence called K-divergence,
these requirements are avoided. Finally, the K-divergence approximation
approximation in more familiar divergence including Hellinger distance.

1 Introduction

In a groundbreaking paper, Jones [1992] proved that the integrated squared
error between a function in a Hilbert space and the best k-term linear combi-
nation greedily selected from a spanning set decays with order 1/k as long as a
certain L1-type norm is finite. Implications for neural network approximation
of sigmoidal functions were worked out in detail by Barron [1993]; bounds for
greedily estimating neural nets from data were given in Barron [1994]. These
developments were significant for two main reasons: they showed that good
approximation is possible without the number of nodes growing exponentially
with the dimension of the function’s domain, and they provided a more feasible
optimization algorithm (greedily, one node at a time) for defining the nodes.

Under the advisement of Andrew Barron, Jonathan Li established analo-
gous 1/k rates of approximation error and risk bounds for greedy k-component
mixture density estimation. Their work is detailed in Li’s doctoral thesis (Li
[1999]) and summarized by Li and Barron. However, their inequality requires
the family to have a uniformly bounded density ratio. As a result, it does
not apply to familiar families, including Gaussian mixtures. In such cases, Li
and Barron advocate truncating the distributions and restricting the parameter
space to a compact subset of Rd. Chapter 3 of Brinda [2018] indicated that the
I-divergence approximation error result can hold without requiring a bounded
density ratio if a certain complexity constant is finite. However, we will show
that a much cleaner result can be established if a different divergence is used to
quantify approximation error.

Barron and Li used I-divergence (relative entropy) for approximation error
because it fits neatly with MDL penalized likelihood risk bounds. Instead, we
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will use K-divergence; it is closely related to relative entropy but is not readily
applied to bounding statistical risk. We show that 1/k rates of approximation
error hold for K-divergence with very little required of the target distribution or
the family. This will imply an analogous result for Hellinger distance.

Proofs of lemmas and theorems are at the end.

2 Approximation by greedy mixtures

Suppose Φ := {φµ : µ ∈ Γ} is a family of probability densities on a measurable
space X with respect to a σ-finite dominating measure. Let Q be a probability
measure on Γ whose domain σ-algebra is fine enough that (µ, x) 7→ φµ(x) is
product-measurable.1 Let φ̄Q denote the integral transform of Q defined by

φ̄Q(x) :=

∫
Γ

φµ(x)dQ(µ)

= Eµ∼Qφµ(x).

Tonelli’s Theorem allows us to conclude that φ̄Q is measurable, and, by inter-
changing integrals, that φ̄Q must be a probability density as well. The corre-
sponding probability measure on X is denoted Φ̄Q and is called the Q mixture
(over Φ).

We let C(Φ) denote set of all such integral transforms of probability measures
(each defined on a sufficiently fine σ-algebra of Γ); this set is convex. Notice
that C(Φ) includes all discrete mixtures from Φ. Importantly, C(Φ) also includes
all of the other well-defined “mixtures” such as continuous mixtures, as allowed
by the nature of Γ.

Given any “target” probability measure P on X , the greedy algorithm of
Barron and Li constructs a sequence of approximating mixtures

p
θ
(P )
k+1

= (1− αk+1)p
θ
(P )
k

+ αk+1φµ(P )
k+1

.

The mixture components θ
(P )
k = {µ(P )

1 , . . . , µ
(P )
k } are greedily chosen according

to

µ
(P )
1 := argmax

µ∈Γ
EX∼P log φµ(X), followed by

µ
(P )
j+1 := argmax

µ∈Γ
EX∼P log[(1− αj+1)p

θ
(P )
j

(X) + αj+1φµ(X)].

We will assume throughout this paper that a maximizer exists at each step; it
need not be unique.

We will use the term “Barron’s weights” to refer to the sequence αj =
2/(j+1). Barron and Li suggest using either these weights or finding the optimal

1By the theory of Carathéodory functions, if X is a separable metrizable space and each
density φµ : X → R+ is continuous, then product-measurability is guaranteed as long as
the domain σ-algebra is fine enough that µ 7→ φµ(x) is measurable for every x ∈ X — see
[Aliprantis and Border, 2006, Lem 4.51].
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weights at each step.2 After k steps, the weight of component j ∈ {1, . . . , k}
is αj

∏k
i=j+1(1 − αi); with Barron’s weights, this simplifies to 2j

k(k+1) . We will

provide results for this choice of weights and also for the choice αj = 1/j which
results in an equal-weighted mixture.

The work of Barron and Li proves that

D(P‖P
θ
(P )
k

) ≤ D(P‖Φ̄Q) +
(1 + log supx,γ1,γ2

γ1(x)
γ2(x) )c2Q(P )

k

where

c2Q(P ) := EX∼P
Eµ∼Qφ2

µ(X)

φ̄2
Q(X)

.

Section 3.2 of Li’s dissertation discusses c2Q(P ), pointing out that it is 1 plus an

expected coefficient of variation; his Lemma 3.1 shows that c2Q(Φ̄Q) is bounded

by the number of components of Φ̄Q if it is a discrete mixture from the model.
Because the inequality holds for every Q, we can state an infimum version:

D(P‖P
θ
(P )
k

) ≤ D(P‖C(Φ)) +
(1 + log supx,γ1,γ2

γ1(x)
γ2(x) )c2Φ(P )

k

where

c2Φ(P ) := lim
ε→0

inf
{
c2Q(P ) : Q s.t. D(P‖Q) ≤ D(P‖C(Φ)) + ε

}
.

If equal weights are used rather than Barron’s weights, then Brinda [2018] ver-
ifies that the results holds with (1 + log k)/k replacing 1/k.

A popular alternative to I-divergence is Jensen-Shannon divergence.

DJS(P,Q) := 1
2D(P‖ 1

2Q+ 1
2P ) + 1

2D(Q‖ 1
2P + 1

2Q)

It is defined in terms of I-divergence, but unlike I-divergence it is symmetric
and finite. The Jensen-Shannon divergence is the average of two quantities that
are called K-divergences by ?.

DK(P‖Q) := D(P‖ 1
2Q+ 1

2P )

The K-divergence was generalized to the family of skewed K-divergences by
Nielsen [2010] as

DK,λ(P‖Q) := D(P‖[1− λ]Q+ λP )

for any λ ∈ [0, 1). Notice that DK,λ becomes increasingly similar to I-divergence
as λ approaches zero. As pointed out by Nielsen, DK,λ is the f -divergence
defined by f(t) = −t log(λ+ 1−λ

t ).

2Technically, Li presented the slightly different sequence α2 = 2/3 and αj = 2/j thereafter.
The sequence 2/(j + 1) also works and is a bit simpler.
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If instead of I-divergence, one uses skewed K-divergence to quantify approx-
imation error, a remarkably clean statement about greedy mixtures holds. In
this context, we apply a new greedy algorithm to create θ̂k = (γ̂1, . . . , γ̂k) by
maximizing the expected log of a modified density.

The key to our skewed K-divergence approximation error result is the fol-
lowing inequality which is analogous to [Li, 1999, Lem 5.9].

Theorem 2.1. Let Φ := {φγ : γ ∈ Γ} be a family of probability densities with
respect to a σ-finite dominating measure, and let Q be a probability measure on
Γ for which (γ, x) 7→ φγ(x) is product-measurable. Given λ ∈ [0, 1], let Pθ̃1 , Pθ̃2 ,
. . . be the sequence of mixtures that greedily maximize EX∼P log ([1−λ]pθ1(X)+
λφ̄Q(X)), EX∼P log ([1 − λ]pθ2(X) + λφ̄Q(X)), . . . . If either Barron’s weights
or optimal weights were used, then

EX∼P log
φ̄Q(X)

[1− λ]pθ̃k(X) + λφ̄Q(X)
≤

log(3
√
e/λ)c2Q(P )

k
.

Alternatively, if equal weights were used, then

EX∼P log
φ̄Q(X)

[1− λ]pθ̃k(X) + λφ̄Q(X)
≤

(1 + log k) log(2
√
e/λ)c2Q(P )

k
.

When the target P is itself a mixture over Φ, a direct application of The-
orem 2.1 gives approximation error rates for the greedy mixtures. To simplify,
we specialize to ordinary K-divergence.

Corollary 2.2. Let Φ := {φγ : γ ∈ Γ} be a family of probability densi-
ties with respect to a σ-finite dominating measure, and let Q be a probability
measure on Γ for which (γ, x) 7→ φγ(x) is product-measurable. Let Pθ̃1 , Pθ̃2 ,

. . . be the sequence of mixtures that greedily maximize EX∼P log (1
2pθ1(X) +

1
2 φ̄Q(X)), EX∼P log (1

2pθ2(X) + 1
2 φ̄Q(X)), . . . . If either Barron’s weights or

optimal weights were used, then

DK(Φ̄Q‖Pθ̃k) ≤
log(6

√
e) c2Q(P )

k
.

Alternatively, if equal weights were used, then

DK(Φ̄Q‖Pθ̃k) ≤
(1 + log k) log(4

√
e) c2Q(P )

k
.

K-divergence can be used to bound Hellinger distance dH using a Pinsker’s-
type inequality. In this and the following results, constants are often rounded
to the nearest whole number for simplicity.

Lemma 2.3. For any probability measures P and Q on a measurable space,

dH
2(P,Q) ≤ 6DK(P‖Q).
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We use the triangle inequality to state a Hellinger approximation error bound
that works for arbitrary distributions.

Corollary 2.4. Let Φ := {φγ : γ ∈ Γ} be a family of probability densities
with respect to a σ-finite dominating measure, and let Q be a probability mea-
sure on Γ for which (γ, x) 7→ φγ(x) is product-measurable. Let Pθ̃1 , Pθ̃2 , . . . be

the sequence of mixtures that greedily maximize EX∼P log (1
2pθ1(X) + 1

2 φ̄Q(X)),
EX∼P log ( 1

2pθ2(X)+ 1
2 φ̄Q(X)), . . .. If either Barron’s weights or optimal weights

were used, then

dH(P, Pθ̃k) ≤ dH(P, Φ̄Q) +
4 cQ(P )√

k
.

Alternatively, if equal weights were used, then

dH(P, Pθ̃k) ≤ dH(P, Φ̄Q) +
(1 + log k) 4 cQ(P )√

k
.

Unlike the I-divergence mixture approximation bounds, these Hellinger re-
sults do not require awkward conditions on the family or on the distribution
to be approximated. Note that an approximation result for total variation dis-
tance dTV also follows using the fact that it is bounded by

√
2 times Hellinger

distance.
There are also opportunities to simplify the first term in the bound by using

P itself as the mixing distribution. In particular, for Wasserstein distance dW
it is easy to bound the distance from P to the P -mixture of a location family.
A simple case is univariate Gaussian.

Lemma 2.5. Let Φ := {φθ(x) : θ ∈ Θ} be a location family with θ indexing the
mean, and let P be a probability measure on Θ. Then

dW (P, Φ̄P ) ≤ E‖Z‖

where Z has density φ0.

We will use this fact to state one more approximation result, this time
for Kolmogorov distance dK . To do so, we make use of a bound for Kol-
mogorov distance in terms of Wasserstein distance. The following Lemma is
a straight-forward generalization of an argument in Section 5 of Chatterjee and
Soundararajan [2012].

Lemma 2.6. Let P and Q have densities p and q with respect to Lebesgue
measure on R, and let pmax represent the supremum of p. Then

dK(P,Q) ≤ 2
√
pmaxdW (P,Q).

By the triangle inequality,

dK(P, Pθk) ≤ dK(P, Φ̄P ) + dK(Φ̄P , Pθk).
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We combine Lemmas 2.5 and 2.6 to bound the Kolmogorov distance from P to
a continuous Gaussian mixture. To bound the Kolmogorov distance from the
continuous mixture to the finite mixture, we can use Corollary 2.2 along with
Lemma 2.3, recalling that

dK ≤ dTV
√

2dH ≤ 2
√

3
√
DK .

Here we state a particular result for Gaussian location mixtures; recall that
Z ∼ N(0, σ2) has expected absolute value equal to σ

√
2/π.

Corollary 2.7. Let Φ := {φµ(x) = 1√
2π σ

e−(x−µ)2/2σ2) : µ ∈ R} be the Gaussian

location family with fixed σ, and let P be a probability measure on R. Let pmax be
the supremum of a density for P . Let Pθ̃1 , Pθ̃2 , . . . be the sequence of mixtures

that greedily maximize EX∼P log (1
2pθ1(X) + 1

2 φ̄Q(X)), EX∼P log (1
2pθ2(X) +

1
2 φ̄Q(X)), . . .. If either Barron’s weights or optimal weights were used, then

dK(P, Pθk) ≤ 2
√
pmaxσ +

8 cP (P )√
k

.

Alternatively, if equal weights were used, then

dK(P, Pθ′k) ≤ 2
√
pmaxσ +

(1 + log k) 7 cP (P )√
k

.

By choosing σ proportionally to 1/k, we are close to obtaining an exact
bound on approximation error for a sequence of mixtures approaching the target
distribution with rate 1/

√
k. It remains to determine whether the behavior of

cP (P ) remains under control as σ decreases.
The primary novelty of these results is in providing a greedy algorithm for

obtaining a mixture converging to the true distribution. The mere existence of
a satisfactory mixture along these lines is often more straight-forward to verify
for some of these distance.

Proofs

Proof of Theorem 2.1. Define the family ΦλΦ̄Q
:= {[1 − λ]φγ + λφ̄Q : γ ∈ Γ}.

Observe that φ̄Q is in C(Φλφ̄Q
) as well; specifically, Eγ∼Q[(1−λ)φγ+λφ̄Q] = φ̄Q.

Importantly, the modified greedy algorithm on Φ is identical to the ordinary
greedy algorithm on ΦλΦ̄Q

as we now verify by induction. For the first step,

this is clear. Next, assume that (1− λ)pθ̂k + λφ̄Q is the greedily optimal choice
from ΦλΦ̄Q

. The next greedy step (with weight α on the new component)
optimizes an expected log of

(1− α)[(1− λ)pθ̂k + λφ̄Q] + α[(1− λ)φγ + λφ̄Q] = (1− λ)[(1− α)pθ̂k + λφγ ] + λφ̄Q

where the second representation makes it clear that this maximization is the
same as a step of the modified greedy algorithm.
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Thus we are justified in applying the ordinary greedy algorithm results to
ΦλΦ̄Q

. Compare our situation to the proofs of [Li, 1999, Lem 5.8 and Lem 5.9].
Two discrepancies arise in the term labeled “3” on page 57 of Li.

First, using the decreasing property of ζ shown in [Li, 1999, Lem 5.3],

ζ

(
[1− α]

(1− λ)pθ̂k−1
+ λφ̄Q

φ̄Q

)
≤ ζ

(
[1− α]

λφ̄Q
φ̄Q

)
≤ ζ([1− α]λ).

Secondly, this term’s expectation, which arises in the proof of [Li, 1999, Lem
5.9], will involve

EX∼P
Eγ∼Q[[1− λ]φγ + λφ̄Q]2(X)

[Eγ∼Q[[1− λ]φγ + λφ̄Q](X)]2

= EX∼P
Eγ∼Q[[1− λ]φγ + λφ̄Q]2(X)

φ̄2
Q(X)

= EX∼P
[1− λ]2Eγ∼Qφ2

γ(X) + 2λ(1− λ)φ̄2
Q(X) + λ2φ̄2

Q(X)

φ̄2
Q(X)

= (1− λ)2c2Q(P ) + λ(2− λ)

≤ (1− λ)2c2Q(P ) + λ(2− λ)c2Q(P )

= c2Q(P );

the inequality follows from the fact that c2Q(P ) ≥ 1.
In light of these observations, Li’s proofs establish that for a step with weight

α on the new component

P log
φ̄Q

[1− λ]pθ̂k+1
+ λφ̄Q

≤ (1− α)P log
φ̄Q

[1− λ]pθ̂k + λφ̄Q
+ α2ζ((1− α)λ)(1− λ2)c2Q(P )

≤ (1− α)P log
φ̄Q

[1− λ]pθ̂k + λφ̄Q

+ α2[1/2 + log 1
1−α + log 1

λ ]c2Q(P ) (1)

using [Li, 1999, Lem 5.4]. The initial term is

P log
φ̄Q

[1− λ]φγ̂1 + λφ̄Q
≤ log(1/λ).

The factor multiplying α2 in (1) is at least 1/2 + log 1
λ , which is at least log 1

λ ,
so it bounds the initial term.

With Barron’s weights, apply [Li, 1999, Lem 5.6] and use α ≤ 2/3; with
equal weights, apply [Brinda, 2018, Lem 3.1.1] and use α ≤ 1/2.

Proof of Lemma 2.3. We noted that K-divergence is the f -divergence defined
by fK(t) := t log 2t

t+1 . It can also be expressed by f̃K(t) := t log 2t
t+1 + 1−t

2 since
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the additional term has Q-integral zero when the density dP/dQ is substituted
for t. We will show that fH(t) := (

√
t−1)2, which defines the squared Hellinger

divergence is bounded point-wise by 6f̃K . This proves that

dH
2(P,Q) =

∫
f̃H(dP/dQ)dQ

≤ 6

∫
fK(dP/dQ)dQ

= 6DK(P‖Q).

To verify the point-wise inequality, first consider the region t ≥ 38. One can
confirm that log 2t

t+1 ≥ 2/3 when t is this large.

fH(t) = (
√
t− 1)2

≤ t+ 1

≤ 6
(
( 2

3 −
1
2 )t+ 1

2

)
≤ 6

(
(log

2t

t+ 1
− 1

2 )t+ 1
2

)
= 6f̃K

Next, we will consider the region [.9, 1.1]. Note that fH(1) = f ′H(1) =
fK(1) = f ′K(1) = 0. By Taylor expansion at 1 with Lagrange remainder,

fH(t) = (t− 1)2

(
1

2t
3/2
1

)
and

6f̃K(t) = (t− 1)2

(
6

t2(t2 + 1)2

)
for some t1 and t2 between 1 and t. A plot shows that the second derivative
of 6f̃K is uniformly larger than the second derivative of fH on [.9, 1.1], so our
expression for 6f̃K(t) is uniformly larger than our expression for fH(t) on that
interval regardless of what t1 and t2 are.

Finally, for the remaining regions [0, .9) and (1.1, 38), the point-wise inequal-
ity is easy to confirm with a plot.

Proof of Lemma 2.5. A draw Y ∼ Φ̄P can be represented asX+Z whereX ∼ P
and Z are independent. The Wasserstein distance is the smallest expected norm
of X − Y among all possible couplings. With this particular coupling,

E‖X − Y ‖ = E‖Z‖

Therefore the Wasserstein distance is bounded by E‖Z‖.
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Proof of Lemma 2.6. This proof follows an explanation found in Chatterjee’s
lecture notes.

CATE

References

Charalambos D. Aliprantis and Kim C. Border. Infinite Dimensional Analysis:
A Hitchhiker’s Guide. Springer, 3rd edition, 2006.

Andrew R. Barron. Universal Approximation Bounds for Superpositions of a
Sigmoidal Function. IEEE Transactions on Information Theory, 39(3):930–
944, 1993.

Andrew R. Barron. Approximation and Estimation Bounds for Artificial Neural
Networks. Machine Learning, 14(1):113–143, 1994.

W. D. Brinda. Adaptive Estimation with Gaussian Radial Basis Mixtures. The-
sis, 2018.

Sourav Chatterjee and Kannan Soundararajan. Random multiplicative func-
tions in short intervals. International Mathematics Research Notices, 2012
(3):479–492, 2012.

Lee K. Jones. A Simple Lemma on Greedy Approximation in Hilbert Space and
Convergence Rates for Projection Pursuit Regression and Neural Network
Training. The Annals of Statistics, 20(1):608–613, 1992.

Jonathan Q. Li. Estimation of Mixture Models. Thesis, 1999.

Jonathan Q. Li and Andrew R. Barron. Mixture Density Estimation. In S. A.
Solla, T. K. Leen, and K. Muller, editors, Advances in Neural Information
Processing Systems, volume 12, pages 279–285. MIT Press.

Frank Nielsen. A family of statistical symmetric divergences based on Jensen’s
inequality. arXiv preprint arXiv:1009.4004, 2010.

9


