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Abstract

By considering a rich class of models with appropriately devised penalties, density
estimators can be designed to naturally adapt to the complexity revealed by the data.
This paper explores approximation and estimation properties of Gaussian mixtures to
perform this type of adaptive estimation. For simplicity and clarity of exposition, we
use equal weights and fixed radial covariance, a model that we will call Gaussian radial
basis mixtures (GRBMs).

The usual formulation of the minimum description length (MDL) risk bound does
not apply to unpenalized maximum likelihood estimation or procedures with exceed-
ingly small penalties. However, using techniques from Brinda and Klusowski [2018]
that generalize the MDL redundancy risk bound method of Barron and Cover [1991]
to arbitrary penalties, we extend the mixture redundancy bounds and approximation
error of Li [1999] to the case of unconstrained parameter spaces. These results together
allow us to establish an exact risk bound bound of order (logn)2/

√
n on the statis-

tical risk of penalized maximum likelihood GRBM estimation (or a greedily obtained
variant) with a prescribed penalty on the number of parameters and no penalty on the
sizes of those parameters.

Our works also extends the order 1/k relative entropy approximation error of k-
component mixtures established by Li, who required that the component mixtures come
from families that have a positive infimum density. Most densities of interest, including
Gaussians, have an infimum of zero, and therefore do not satisfy Li’s condition, though
a truncated version does. We show that the desired bound on expected redundancy
rate does hold for Gaussians and other elliptical distributions if one uses a different
definition for the data-generating distribution’s “complexity” constant.

1 Introduction

In a groundbreaking paper, Jones [1992] proved that the integrated squared error between
a function in a Hilbert space and the best k-term linear combination greedily selected
from a spanning set decays with order 1/k as long as a certain L1-type norm is finite.
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Implications for neural network approximation of sigmoidal functions were worked out in
detail by Barron [1993]; bounds for greedily estimating neural nets from data were given in
Barron [1994]. These developments were significant for two main reasons: they showed that
good approximation is possible without the number of nodes growing exponentially with
the dimension of the function’s domain, and they provided a more feasible optimization
algorithm (greedily, one node at a time) for defining the nodes.

Under the advisement of Andrew R. Barron, Jonathan Li established analogous 1/k rates
of approximation error and risk bounds for greedy k-component mixture density estimation.
Their work is detailed in Li’s doctoral thesis (Li [1999]) and summarized by Li and Barron;
see also Rakhlin et al. [2005] for some improvements. However, all these works require
the family to have a uniformly bounded density ratio. As a result, it does not apply to
familiar families, including Gaussian mixtures. In such cases, Li and Barron advocate
truncating the distributions and restricting the parameter space to a compact subset of Rd.
We will demonstrate that 1/k rates can hold without a uniformly bounded density ratio;
in particular, we prove such a result for expected redundancy rate of a greedy maximum
likelihood estimator (MLE) for Gaussian mixtures.

The minimum description length (MDL) community introduced the notion of a two-
part code for specifying data X. First, L(θ) nats are used to specify distribution Pθ, then
log 1

pθ(X) are used to efficiently specify the data with respect to that distribution. The

redundancy of Pθ for X ∼ P is the length of a two-part code minus log 1
p(X) , the length

that would be used by the data-generating distribution P . In the case of Xn iid∼ P , we often
divide the redundancy by the sample size to define the redundancy rate

1

n

[
n∑
i=1

log
p(Xi)

pθ(Xi)
+ L(θ)

]
.

For an estimator θ̂, the expected redundancy rate

1

n
E

[
n∑
i=1

log
p(Xi)

pθ̂(Xi)
+ L(θ̂)

]

can be related to statistical risk. Barron and Cover [1991] proved that if L is large enough, an
estimator’s Bhattacharyya risk is bounded by its expected redundancy rate. [Brinda, 2018,
Chap 2] showed that even if L is small, the risk can be bounded by expected redundancy
rate plus a corrective term that is often manageable.

For a penalized MLE with penalty L, the expected redundancy rate is bounded by a
quantity called an index of resolvability of the model for the data-generating distribution.1

1

n
E

[
n∑
i=1

log
p(Xi)

pθ̂(Xi)
+ L(θ̂)

]
=

1

n
Emin

θ

[
n∑
i=1

log
p(Xi)

pθ(Xi)
+ L(θ)

]

≤ 1

n
min
θ

E

[
n∑
i=1

log
p(Xi)

pθ(Xi)
+ L(θ)

]

= min
θ

[
D(P‖Pθ) +

L(θ)

n

]
1Brinda and Klusowski [2018] presents essentially the same results as [Brinda, 2018, Chap 2] but states

them for resolvability rather than redundancy.
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For a more extensive overview, see Barron et al. [2008].
In Section 2, we will prove bounds on the expected redundancy and the approximation

error of greedy maximizers of likelihood. The expected redundancy of the true maximizer
is no greater than the expected redundancy of a greedy maximizer, so the bounds apply to
ordinary penalized MLEs as well. Section 3 uses one of the expected redundancy results
to bound the risk of a penalized MLE for Gaussian mixtures. For simplicity, we will use
mixtures of spherically symmetric components all having the same scale, which we will call
Gaussian radial basis mixtures (GRBMs). Although, in Section 4, we point to generaliza-
tions to other mixture distributions, including elliptical ones.

Proofs of lemmas and theorems are at the end.

2 Expected redundancy of mixtures

Suppose Φ := {φµ : µ ∈ Γ} is a family of probability densities on a measurable space X
with respect to a σ-finite dominating measure. Let Q be a probability measure on Γ whose
domain σ-algebra is fine enough that (µ, x) 7→ φµ(x) is product-measurable.2 Let φ̄Q denote
the integral transform of Q defined by

φ̄Q(x) :=

∫
Γ

φµ(x)dQ(µ)

= Eµ∼Qφµ(x).

Tonelli’s Theorem allows us to conclude that φ̄Q is measurable, and, by interchanging inte-
grals, that φ̄Q must be a probability density as well. The corresponding probability measure
on X is denoted Φ̄Q and is called the Q mixture (over Φ).

We let C(Φ) denote set of all such integral transforms of probability measures (each
defined on a sufficiently fine σ-algebra of Γ); this set is convex. Notice that C(Φ) includes
all discrete mixtures from Φ. Importantly, C(Φ) also includes all of the other well-defined
“mixtures” such as continuous mixtures, as allowed by the nature of Γ.

Given any “target” probability measure P on X , the greedy algorithm of Barron and Li
constructs a sequence of approximating mixtures

p
θ
(P )
k+1

= (1− αk+1)p
θ
(P )
k

+ αk+1φµ(P )
k+1

.

The mixture components θ
(P )
k = {µ(P )

1 , . . . , µ
(P )
k } are greedily chosen according to

µ
(P )
1 := argmax

µ∈Γ
EX∼P log φµ(X), followed by

µ
(P )
j+1 := argmax

µ∈Γ
EX∼P log[(1− αj+1)p

θ
(P )
j

(X) + αj+1φµ(X)].

We will assume throughout this paper that a maximizer exists at each step; it need not be
unique.

We will use the term “Barron’s weights” to refer to the sequence αj = 2/(j+ 1). Barron
and Li suggest using either these weights or finding the optimal weights at each step.3 After

2By the theory of Carathéodory functions, if X is a separable metrizable space and each density φµ :
X → R+ is continuous, then product-measurability is guaranteed as long as the domain σ-algebra is fine
enough that µ 7→ φµ(x) is measurable for every x ∈ X — see [Aliprantis and Border, 2006, Lem 4.51].

3Technically, Li presented the slightly different sequence α2 = 2/3 and αj = 2/j thereafter. The sequence
2/(j + 1) also works and is a bit simpler.
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k steps, the weight of component j ∈ {1, . . . , k} is αj
∏k
i=j+1(1−αi); with Barron’s weights,

this simplifies to 2j
k(k+1) . We will provide results for this choice of weights and also for the

choice αj = 1/j which results in an equal-weighted mixture.
Theorem 2.1 is a variant on Li’s Lemma 5.9 that will make it possible for us to avoid

requiring a lower bound on the densities being mixed. For any A ⊆ Γ and probability
measure Q on Γ, we define

b
(A)
Q (P ) := EX∼P

[(
1 + sup

µ∗∈A
log

supµ∈Γ φµ(X)

φµ∗(X)

) Eµ∼Qφ2
µ(X)

[φ̄Q(X)]2

]
.

In particular, the quantities of current interest to us will have the greedy selections θ
(P )
k as

the set A. We use b
(k)
Q (P ) as shorthand for b

(θPk )
Q (P ).

Theorem 2.1. Let Φ := {φµ : µ ∈ Γ} be a family of probability densities with respect to a σ-
finite dominating measure, and let Q be a probability measure on Γ for which (µ, x) 7→ φµ(x)
is product-measurable. Let P

θ
(P )
1
, P

θ
(P )
2
, . . . be the sequence of mixtures from Φ that greedily

maximize EX∼P log pθ1(X), EX∼P log pθ2(X), . . . . If either Barron’s weights or optimal
weights were used, then

EX∼P log
φ̄Q(X)

p
θ
(P )
k

(X)
≤
b
(k)
Q (P )

k
.

Alternatively, if equal weights were used, then

EX∼P log
φ̄Q(X)

p
θ
(P )
k

(X)
≤

(1 + log k) b
(k)
Q (P )

k
.

After stating some of the interesting consequences this theorem, we will explore ways of

bounding b
(k)
Q (P ) in specific contexts.

Corollary 2.2 uses Theorem 2.1 to bound the approximation error of greedy k-component
mixtures in terms of any specific mixture over the family.

Corollary 2.2. Let Φ := {φµ : µ ∈ Γ} be a family of probability densities with respect to a σ-
finite dominating measure, and let Q be a probability measure on Γ for which (µ, x) 7→ φµ(x)
is product-measurable. Let P

θ
(P )
1
, P

θ
(P )
2
, . . . be the sequence of mixtures from Φ that greedily

maximize EX∼P log pθ1(X), EX∼P log pθ2(X), . . . . If either Barron’s weights or optimal
weights were used, then

D(P‖P
θ
(P )
k

) ≤ D(P‖Φ̄Q) +
b
(k)
Q (P )

k
.

Alternatively, if equal weights were used, then

D(P‖P
θ
(P )
k

) ≤ D(P‖Φ̄Q) +
(1 + log k) b

(k)
Q (P )

k
.
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The above result holds for any legitimate mixing distribution Q, so it holds for the
infimum:

D(P‖P
θ
(P )
k

) ≤ inf
Q
{D(P‖Φ̄Q) +

b
(k)
Q (P )

k
}.

We will focus on conclusions for which the first term achieves its infimum so that our
approximation error bound explicitly exhibits the divergence from the target to the set of
all mixtures. To that end, we define4

b
(k)
Φ (P ) := lim

ε→0
inf
{
b
(k)
Q (P ) : Q s.t. D(P‖Φ̄Q) ≤ D(P‖C(Φ)) + ε

}
.

This quantity can also be thought of as the smallest possible limit of b
(k)
Qn

(P ) among the

sequences (Qn) for which D(P‖Φ̄Qn) approaches the infimum relative entropy D(P‖C(Φ)).

Corollary 2.3. Let Φ := {φµ : µ ∈ Γ} be a family of probability densities with respect
to a σ-finite dominating measure. Let P

θ
(P )
1

, P
θ
(P )
2

, . . . be the sequence of mixtures from Φ

that greedily maximize EX∼P log pθ1(X), EX∼P log pθ2(X), . . . . If either Barron’s weights
or optimal weights were used, then

D(P‖P
θ
(P )
k

) ≤ D(P‖C(Φ)) +
b
(k)
Φ (P )

k
.

Alternatively, if equal weights were used, then

D(P‖P
θ
(P )
k

) ≤ D(P‖C(Φ)) +
(1 + log k) b

(k)
Φ (P )

k
.

The MDL method for bounding risk penalized likelihood estimation is neatly stated in
terms of the model’s relative entropy approximation error. In truth, the method works for
more general estimators and only needs a bound on the expected coding redundancy, which
Corollary 2.4 bounds using Theorem 2.1. Throughout the remainder of this section, let

Pn denote the random empirical distribution of Xn iid∼ P ; the notation θ̂j := θ
(Pn)
j comes

naturally.

Corollary 2.4. Let Φ := {φµ : µ ∈ Γ} be a family of probability densities with respect to a σ-
finite dominating measure, and let Q be a probability measure on Γ for which (µ, x) 7→ φµ(x)
is product-measurable. Let Pθ̂1 , Pθ̂2 , . . . be the sequence of mixtures from Φ that greedily
maximize the iid likelihood. If either Barron’s weights or optimal weights were used, then

E
Xn

iid∼P
1

n

∑
i

log
p(Xi)

pθ̂k(Xi)
≤ D(P‖Φ̄Q) +

E b(k)
Q (Pn)

k

and

E
Xn

iid∼P
1

n

∑
i

log
p(Xi)

pθ̂k(Xi)
≤ D(P‖C(Φ)) +

E b(k)
Φ (Pn)

k
.

4This definition and other similar ones to come are analogous to that of [Li, 1999, Cor 3.3.1].
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Alternatively, if equal weights were used, then

E
Xn

iid∼P
1

n

∑
i

log
p(Xi)

pθ̂k(Xi)
≤ D(P‖Φ̄Q) +

(1 + log k)E b(k)
Q (Pn)

k

and

E
Xn

iid∼P
1

n

∑
i

log
p(Xi)

pθ̂k(Xi)
≤ D(P‖C(Φ)) +

(1 + log k)E b(k)
Φ (Pn)

k
.

Note that the expected redundancy bounds of Corollary 2.4 hold for the true maximum
likelihood estimator as well, since it produces larger log likelihood values than the greedy
algorithm does.

The above corollaries become useful once a bound for b
(k)
Q (P ) has been established.

Theorem 2.5 does so by generalizing Li’s approach. First, we define the point-wise density

ratio supremum sΦ(x) := supµ1,µ2∈Γ
φµ1 (x)

φµ2 (x) .

Theorem 2.5. Let Φ := {φµ : µ ∈ Γ} be a family of probability densities, and let Q be a

probability measure on Γ. Then both b
(k)
Q (P ) and Eb(k)

Q (Pn) are bounded by

EX∼P

[
(1 + log sΦ(X))

Eµ∼Qφ2
µ(X)

φ̄2
Q(X)

]
.

A uniform bound on the density ratio provides a constant bound on sΦ. In that case,
(1 + log sup sΦ) c2Q(P ) works as a bound, where

c2Q(P ) := EX∼P
Eµ∼Qφ2

µ(X)

φ̄2
Q(X)

;

likewise (1 + log sup sΦ) c2Φ(P ) works in the infimum version of the bound, where

c2Φ(P ) := lim
ε→0

inf
{
c2Q(P ) : Q s.t. D(P‖Q) ≤ D(P‖C(Φ)) + ε

}
.

These are essentially the bounds given in Li [1999]. Section 3.2 of that dissertation discusses
c2Q(P ), pointing out that it is 1 plus an expected coefficient of variation; his Lemma 3.1 shows

that c2Q(Φ̄Q) is bounded by the number of components of Φ̄Q if it is a discrete mixture from
the model.

Li’s results rely on a uniform bound for the density ratio, whereas Theorem 2.5 allows
the density ratio to be bounded as a function of x and incorporates this function into a
complexity constant for P .

For GRBMs with component means in an unbounded Γ ⊆ Rd there is no uniform bound,
but in that case

log sΦ(x) =
1

2σ2
sup
µ∈Γ
‖x− µ‖2

≤
‖x− EX‖2 + supµ∈Γ ‖µ− EX‖2

σ2
.
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This leads us to define a weighted version of c2Q(P ) that arises in the GRBM bounds.

C2
Q(P ) := EX∼P

‖X − EX‖2

σ2

Eµ∼Qφ2
µ(X)

φ̄2
Q(X)

By comparison to the proof of [Li, 1999, Lem 3.1], it is easily seen that if Φ̄Q is a discrete
mixture of components φ1, . . . , φk, then

C2
Q(Φ̄Q) ≤ 1

σ2

k∑
j=1

EXj∼φj‖Xj − EX∼Φ̄QX‖
2.

When the parameter space is bounded, Corollary 2.6 states a bound that follows from
Theorem 2.5.

Corollary 2.6. Let Φ := {N(µ, σ2Id) : µ ∈ Γ ⊆ B(a, r)}, and let Q be a probability measure

on Γ with domain at least as fine as the Borel σ-field. Then both b
(k)
Q (P ) and E b(k)

Q (Pn) are
bounded by

(1 + 2r2+2‖a−EX‖2
σ2 ) c2Q(P ) + 2C2

Q(P )

where X ∼ P . Additionally, both b
(k)
Φ (P ) and E b(k)

Φ (Pn) are bounded by

lim
ε→0

inf
{

[(1 + 2r2+2‖a−EX‖2
σ2 )c2Q(P ) + 2C2

Q(P )] : Q s.t. D(P‖Φ̄Q) ≤ D(P‖C(Φ)) + ε
}
.

In conjunction with the previous corollaries, Corollary 2.6 enables us to bound the ap-
proximation error and expected redundancy of GRBMs with constrained component means.

Without constraining the parameter space, we can still bound the expected redundancy
of GRBM maximum likelihood estimation by using Corollary 2.4 with Theorem 2.7 which
uses the fact for the GRBM model all selected component means must be in the convex hull
of the data points. The bound involves the Lp-norm ‖Y ‖p := (E‖Y ‖p)1/p.

Theorem 2.7. Let Φ := {N(µ, σ2Id) : µ ∈ Rd}, and let Q be a probability measure on Rd

with domain at least as fine as the Borel σ-field. Then for any z ≥ 1, E b(k)
Q (Pn) is bounded

by

n1/z
[
(1 +

‖X−EX‖22z
σ2 ) c2Q(P ) + 2C2

Q(P )
]
,

and E b(k)
Φ (Pn) is bounded by

n1/z lim
ε→0

inf
{

[(1 +
‖X−EX‖22z

σ2 )c2Q(P ) + 2C2
Q(P )] : Q s.t. D(P‖Φ̄Q) ≤ D(P‖C(Φ)) + ε

}
.

Furthermore, if P has the subgaussianity property that EX∼P et‖X−EX‖ ≤ eσ
2
P t

2/2 for all

t ≥ 0, then E b(k)
Q (Pn) is bounded by

(1 + log n)
[
(1 +

5σ2
P

σ2 ) c2Q(P ) + 2C2
Q(P )

]
,

and E b(k)
Φ (Pn) is bounded by

(1 + log n) lim
ε→0

inf
{

[(1 +
5σ2
P

σ2 )c2Q(P ) + 2C2
Q(P )] : Q s.t. D(P‖Φ̄Q) ≤ D(P‖C(Φ)) + ε

}
.
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3 Risk of Gaussian radial basis mixtures

Using the generalized MDL risk bound approach from [Brinda, 2018, Chap 2] with the
expected redundancy bound derived in 2.7, we derive the following risk bound for GRBM
estimation.5

Theorem 3.1. Let Φ := {N(µ, σ2Id) : µ ∈ Rd} represent the Gaussian location family with

covariance σ2Id. Let θ̂ = (k̂, {µ̂1, . . . µ̂k}) index the equal-weighted GRBM that maximizes
(or greedily maximizes) log-likelihood minus penalty L(θ) = 3dk log 4nk. If there exists

σP > 0 for which EX∼P et‖X−EX‖ ≤ eσ
2
P t

2/2 for all t ≥ 0, then

EDB(P, Pθ̂) ≤ D(P‖C(Φ)) +
12d(1 + log n)2

√
n

[
η2

Φ(P ) + σ2
P + 1

σ2 + E‖X̃ − EX‖+ 1
]

where the distribution of X̃ has density proportional to
√
p and

η2
Φ(P ) := lim

ε→0
inf{(1 +

σ2
P

σ2 )c2Q(P ) + C2
Q(P ) : Q s.t. D(P‖Φ̄Q) ≤ D(P‖C(Φ)) + ε}.

Furthermore, DB(P, Pθ̂) minus

1

n

∑
i

log
p(Xi)

pθ̂(Xi)
+

3dk̂ log 4nk̂

n
+

3d√
n

[
max
i
‖Xi − EX‖2 + 1/σ2 + E‖X̃ − EX‖+ 1

]
is stochastically less than an exponential random variable with rate 2/n. If additionally
D(X‖X + x) ≤ CP ‖x‖α for all x and some positive constants α > 0 and CP > 0, then

EDB(P, Pθ̂) ≤ σ
αCPEZ∼N(0,Id)‖Z‖α +

12d(1 + log n)2

√
n

[
η2

Φ(P ) + σ2
P + 1

σ2 + E‖X̃ − EX‖+ 1
]
,

and if σ � (log n)−1/8, then

EDB(P, Pθ̂)→ 0, n→ +∞.

In other words, the penalized MLE that minimizes the Kullback-Leibler divergence to the
truth P is consistent even under misspecification.

4 Discussion

The proof techniques used to obtain the statements in Theorem 3.1 can readily be adapted to
handle mixtures of non-isotropic Gaussians, i.e., when Φ = {N(µ,Σ) : µ ∈ Rd}, where Σ is a
positive definite variance-covariance matrix,6 and reach similar conclusions. There is also the
opportunity to conduct mixture modeling beyond Gaussian. For example, the overall phi-
losophy of our results remain valid when Φ is a location family of densities x 7→ h(‖x−µ‖H),
where h is a nonnegative, strictly decreasing function and H is a Hilbert space with inner
product 〈·, ·〉H and norm ‖x‖H =

√
〈x, x〉H . Examples of such distributions include the

5The proof of Theorem 3.1 shows that the constant factors and the dependence on dimension are better
than stated here. The inequality presented by the theorem was chosen for simplicity.

6In fact, the variance-covariance matrix need not be the same in each mixture component.
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multivariate t-distribution, multivariate Laplace distribution, multivariate logistic distribu-
tion, multivariate Cauchy distribution, or any other elliptical distribution satisfying our
assumption on h. An analogous condition to sub-Gaussian ‖X −EX‖ in our risk bounds is
that [h(2‖X −EX‖H)]−λ be integrable for some λ > 0. We will leave a thorough treatment
of these extensions for future consideration.

Proofs

First, we will establish an iteration lemma similar to [Li, 1999, Lem 5.6] that enables us to
deal with equal-weighted greedy mixtures. See also [Sancetta, 2013, Lemma 2] for a similar
conclusion.

Lemma 4.1. Let (Bk) be a non-negative and non-decreasing sequence of real numbers. If
(Dk) is a sequence such that

Dk+1 ≤ k
k+1Dk + 1

(k+1)2Bk+1.

then

Dk ≤
D1 +Bk log k

k
.

Proof. The inequality is trivial for k = 1. For k ≥ 2, the stated consequence follows from
the fact that

Dk ≤
D1 +B

∑k
j=2 1/j

k
(1)

because the harmonic sum is bounded by the logarithm. We prove (1) by induction, assum-
ing Bk = B is fixed for all k. For k = 2,

D2 ≤
D1 +B/2

2

as required. Next, assuming (1) holds for Dk,

Dk+1 ≤ k
k+1Dk + 1

(k+1)2B

≤
D1 +B

∑k
j=2 1/j

k + 1
+
B/(k + 1)

k + 1

=
D1 +B

∑k+1
j=2 1/j

k + 1
.

Now suppose rather than a fixed B, we have non-decreasing (Bk). To get the desired
result for any particular k, simply invoke the fixed version with B = Bk which is at least as
large as the sequence’s previous terms.

A crucial function in Li [1999] is

ζ(z) :=
z − 1− log z

(z − 1)2
.

Li’s Lemma 5.4 provides a convenient bound; the following lemma is a slight variant on that
bound.
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Lemma 4.2. For any t ≥ 0,

ζ( t3 ) ≤ 1 + log( 1
t ∨ 1).

Proof. It is easy to verify that if t ≥ 1, then ζ( t3 ) is less than 1, which is the value on the
right side.

Next, we derive a rough bound that will provide the desired result for small values of t.
Assuming z ≤ 1,

ζ(z) :=
z − 1− log z

(z − 1)2

= log 1
z +

z − 1− (2z − z2) log z

(z − 1)2

≤ log 1
z +

z − 1− 2z log z

(z − 1)2

Assuming further that z = .1, the numerator of the second term is no greater than .1 −
1 + .2 log 10 ≈ −.44; the denominator inflates the term, making it more negative. For any
z ≤ .1, the second term’s numerator will be less than that of the z = .1 case (because z log z
is monotonic on [0, .1]). Thus for z ≤ .1, the second term is bounded by 1 − log 3 ≈ −.10.
This verifies that the proposed inequality works for t ≤ .3.

For the intermediate region t ∈ (.3, 1), draw a plot to see that ζ( t3 ) is less than 1 −
log t.

Proof of Theorem 2.1. First, follow the proof of [Li, 1999, Lem 5.8] except use our

Lemma 4.2 to bound ζ((1 − α)
p
θ
(P )
k−1

φ̄Q
), which differs only slightly from Li’s Lemma 5.4.

Since ζ is decreasing ([Li, 1999, Lem 5.3]), the bound for α = 2/3 also works for any smaller
value of α.

ζ

(
(1− α)

p
θ
(P )
k−1

φ̄Q

)
≤ ζ

(p
θ
(P )
k−1

3φ̄Q

)

≤ 1 + log
φ̄Q ∨ pθ(P )

k−1

p
θ
(P )
k−1

= 1 + log
φ̄Q ∨

∑
j λjφµ(P )

j∑
j λjφµ(P )

j

≤ 1 + log

∑
j λj(φ̄Q ∨ φµ(P )

j
)∑

j λjφµ(P )
j

≤ 1 + max
j∈{1,...,k−1}

log
φ̄Q ∨ φµ(P )

j

φ
µ
(P )
j

by the log-sum inequality. The numerator is bounded by sup(µ,x) φµ(x).
Combine this with the proof of [Li, 1999, Lem 5.9] to see the iterative inequality

EX∼P log
φQ(X)

p
θ
(P )
k+1

(X)
≤ (1− α)EX∼P log

φQ(X)

p
θ
(P )
k

(X)
+ α2b

(k)
Q (P ).

10



The initial term is

EX∼P log
φQ(X)

p
θ
(P )
1

(X)
= EX∼P log

φQ(X)

φ
µ
(P )
1

(X)

≤ EX∼P

(
1 + log

φQ(X)

φ
µ
(P )
1

(X)

)

≤ EX∼P

[(
1 + log

φQ(X)

φ
µ
(P )
1

(X)

)
Eµ∼Qφ2

µ(X)

φ̄2
Q(X)

]
= b

(1)
Q (P )

because
Eµ∼Qφ2

µ

φ̄2
Q

≥ 1 point-wise.

b
(k)
Q (P ) is a non-negative and non-decreasing sequence as k increases. If Barron’s weights

are used then [Li, 1999, Lem 5.6] applies. If optimal weights are used at any step, then
it results in a smaller expected log likelihood ratio than the Barron weight does, so the
inequality still holds.

The result for equal weights follows from Lemma 4.1 using the fact that the initial term

is bounded by b
(1)
Q (P ) which is in turn bounded by b

(k)
Q (P ).

Proof of Theorem 2.5. For b
(k)
Q (P ), the result is immediate from the definitions. For the

expected empirical version of the inequality,

Eb(k)
Q (Pn) := E

Xn
iid∼P

1
n

∑
i

[(
1 + max

µ̂∈θ̂k
log

supµ φµ(Xi)

φµ̂(Xi)

) Eµ∼Qφ2
µ(Xi)

φ̄2
Q(Xi)

]

≤ E
Xn

iid∼P
1
n

∑
i

[
(1 + log sΦ(Xi))

Eµ∼Qφ2
µ(Xi)

φ̄2
Q(Xi)

]

= 1
n

∑
i

EXi∼P

[
(1 + log sΦ(Xi))

Eµ∼Qφ2
µ(Xi)

φ̄2
Q(Xi)

]
.

Lemma 4.3. Let X,X1, . . . , Xn
iid∼ P . For any non-negative functions g and h,

E
1

n

∑
i

[
g(Xi) max

j
h(Xj)

]
≤ Eg(X)h(X) + [Eg(X)]Emax

i
h(Xi).

Proof.

E
1

n

∑
i

g(Xi) max
j
h(Xj) ≤ E

1

n

∑
i

g(Xi)[h(Xi) + max
j 6=i

h(Xj)]

= E
1

n

[∑
i

g(Xi)h(Xi) +
∑
i

g(Xi) max
j 6=i

h(Xj)

]
= E g(X)h(X) + [Eg(X1)][E max

i≤n−1
h(Xi)]

11



Lemma 4.4. Let h : R+ 7→ R+ be a strictly decreasing, nonnegative function. Let H be
a Hilbert space with inner product 〈·, ·〉H and norm ‖x‖H =

√
〈x, x〉H and suppose that

φ(x) = h(‖x‖H) is a density with respect to a dominating measure on H. Consider the shift
(location) family of densities Φ = {φµ(x) = h(‖x − µ‖H) : µ ∈ Γ}. Let µ̂1, . . . , µ̂k be the
component means from the MLE (or greedily obtained MLE) of a k-component mixture of
densities from Φ from an iid sample X1, . . . , Xn and suppose conv({X1, . . . , Xn}) ⊂ Γ. Then
for each j = 1, . . . , k, µ̂j belongs to the convex hull of the data X1, . . . , Xn. Furthermore,
if H is d-dimensional, there exists Aj ⊂ [n] with |Aj | ≤ d + 1 such that µ̂j =

∑
i∈Aj λiXi,

where the λi are nonnegative and sum to one.

Proof. The log-likelihood of the model takes the form

logL(µ,π) =

n∑
i=1

log

 k∑
j=1

πjφµj (Xi)

 .

If µ does not belong to Pn = conv({X1, . . . , Xn}), the convex polytope of the data
X1, . . . , Xn, then by the Hilbert projection theorem, there is a unique point µ̃ = projPn(µ)
in Pn such that ‖µ̃− x‖H = ‖projPn(µ− x)‖H < ‖µ− x‖H for all x ∈ Pn, i.e., the orthog-
onal projection onto a closed, convex set is a subcontractive linear operator. In particular,
this means that φµ̃(Xi) > φµ(Xi) for all i = 1, . . . , n and consequently the log-likelihood
is increased. Thus, µ must belong to Pn. The representation of each µ̂j as the convex
combination of no more than d+ 1 data points follows from Carathéodory’s representation
theorem for finite dimensional vector spaces.

Specializing Lemma 4.4 to the isotropic Gaussian, i.e., h is proportional to the univariate
standard normal density and ‖·‖H is the Euclidean norm in Rd scaled by 1/σ, we obtain the
result that the MLE (or greedily obtained version) component means of a Gaussian mixture
can each be written as a convex combination of at most d + 1 data points. Perhaps even
more surprising is that this result continues to hold when the component distributions are
Gaussian with general variance-covariance matrix Σ, since in this case, x>Σ−1y defines an
inner product in Rd whenever Σ−1 is positive definite.

Finally, we remark that the result need not hold for general normed vector spaces (e.g.,
some Lp spaces on Rd), since the nearest-point projection, even when it exists and is unique,
may fail to be subcontractive. Hence for such norms, the likelihood maximizing component
means may not lie in the convex hull of the data.

Lemma 4.5. Suppose X ∼ P and D(X‖X + x) ≤ CP ‖x‖α for all x and some positive
constants α > 0 and CP > 0. Let Φ = {φµ(x) = φ(x−µ) : µ ∈ Γ} and suppose supp(X) ⊂ Γ.
If Y is independent of X and has density φ, then

D(P‖C(Φ)) ≤ D(X‖X + Y ) ≤ CPE‖Y ‖α. (2)

In particular, if φ is the Gaussian density in Rd with zero mean and variance-covariance
matrix σ2Id, then

D(P‖C(Φ)) ≤ σαCPEZ∼N(0,Id)‖Z‖α.

Proof. The first inequality in (2) is because the density of Z = X+Y , i.e., z 7→ EX∼Pφ(z−
X) belongs to C(Φ), with mixing measure P . Suppose X has density p. By the convexity
of relative entropy, we have that

D(X‖Z) = EX∼P log
p(X)

EY p(X − Y )
≤ EX∼PEY log

p(X)

p(X − Y )
.

12



By Fubini’s theorem and the assumption D(X‖X + x) ≤ CP ‖x‖α for all x, we have

EX∼PEY log
p(X)

p(X − Y )
= EY EX∼P log

p(X)

p(X − Y )
≤ CPE‖Y ‖α.

As a side note, when X ∼ N(µP , σ
2
P Id), D(X‖X + x) = ‖x‖2/(2σ2

P ), and so for this
case, the assumption of Lemma 4.5 holds with CP = 1/(2σ2

P ) and α = 2. On the other
hand, if X is the product distribution of d univariate Laplace distributions with diversity
parameter bP > 0, then D(X‖X + x) ≤ ‖x‖1/bP ≤

√
d‖x‖/bP and hence the assumption of

Lemma 4.5 holds with CP =
√
d/bP and α = 1.

Proof of Theorem 2.7. For the GRBM model,

b
(k)
Q (P ) := EX∼P

[(
1 + max

µ̂∈θ̂k
log

supµ φµ(X)

φµ̂(X)

) Eµ∼Qφ2
µ(X)

[φ̄Q(X)]2

]

= EX∼P

[(
1 + max

µ̂∈θ̂k

‖X − µ̂‖2

2σ2

) Eµ∼Qφ2
µ(X)

[φ̄Q(X)]2

]

≤ EX∼P

[(
1 +
‖X − EX‖2

σ2
+ max
µ̂∈θ̂k

‖µ̂− EX‖2

σ2

) Eµ∼Qφ2
µ(X)

[φ̄Q(X)]2

]
.

Therefore, with X,X1, . . . , Xn
iid∼ P ,

Eb(k)
Q (Pn) ≤ E

Xn
iid∼P

1

n

∑
i

[(
1 +
‖Xi − EX‖2

σ2
+ max
µ̂∈θ̂k

‖µ̂− EX‖2

σ2

) Eµ∼Qφ2
µ(Xi)

[φ̄Q(Xi)]2

]
.

By Lemma 4.4, the likelihood maximizing (or greedily maximizing) component means
must be in the convex hull of the data points. Furthermore, the farthest point to any convex
polytope always occurs at a corner point; every corner point of the data’s convex hull is
itself a data point. Thus,

max
µ̂∈θ̂k

‖µ̂− EX‖ ≤ max
j
‖Xj − EX‖.

By Lemma 4.3,

E b(k)
Q (Pn) ≤

(
1 +

Emaxi ‖Xi − EX‖2

σ2

)
c2Q(P ) + 2C2

Q(P )

Lemmas 4.7 and 4.8 below complete the proof by bounding the expected maximum squared
deviation.

The following lemma provides a general pattern for bounding an expected sample max-
imum. We present it here along with a standard proof for the reader’s convenience.

Lemma 4.6. If X,X1, . . . , Xn
iid∼ P , then for any convex, increasing, non-negative function

f ,

Emax
i
Xi ≤ f−1 (nEf(X)) .

13



Proof.

f(Emax
i
Xi) ≤ Ef(max

i
Xi)

= Emax
i
f(Xi)

≤ E
∑
i

f(Xi)

= nEf(X)

Lemma 4.7. Let X,X1, . . . , Xn
iid∼ P . For any z ≥ 1,

Emax
i
‖Xi − EX‖2 ≤ n1/z(E‖X − EX‖2z)1/z.

Proof. Use Lemma 4.6 with f(x) = xz.

Lemma 4.8. Let X,X1, . . . , Xn
iid∼ P . If there exists σP > 0 such that Eet‖X−EX‖ ≤ eσ2

P t
2/2

for all t ≥ 0, then

Emax
i
‖Xi − EX1‖2 ≤ 2e2

e2−1 σ
2
P (1 + log n) < 5σ2

P (1 + log n).

Proof. First, note that for t < 1/(2σ2
P ), the assumption on the moment generating function

implies that

Eet‖X−EX‖
2

= E
∫
R

1√
2πσP

ez
√

2t/σ2
P ‖X−EX‖−z

2/(2σ2
P )dz

=

∫
R

1√
2πσP

Eez
√

2t/σ2
P ‖X−EX‖−z

2/(2σ2
P )dz

≤
∫
R

1√
2πσP

ez
2t−z2/(2σ2

P )dz

=
1√

1− 2tσ2
P

.

Using Lemma 4.6 with f(x) = ext,

E
Xn

iid∼P
max
i
‖Xi − EX‖2 ≤ t−1 log

(
nEet‖Xi−EX‖

2
)

≤ t−1 log
(
n(1− 2tσ2

P )−1/2
)
.

The result follows from choosing t = (1− e−2)/(2σ2
P ).

Lemma 4.9 formalizes a self-evident observation about reweighting a density toward a
point. The stochastic inequality implies an inequality for the expectations, which is used for
Theorem 3.1. It also implies a stochastic inequality (and therefore expectation inequality)
for the squared norms, which is used for an example in [Brinda, 2018, Section 2.2].
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Lemma 4.9. Let h : R+ 7→ R+ be a decreasing, nonnegative function. Let V be a normed
vector space with norm ‖ · ‖V and set g(x) = h(‖x− µ‖V ). Let U be a random vector with
Lebesgue density q, and let W be a random vector with density proportional to the product
qg. Then

‖W − µ‖V
st
≤ ‖U − µ‖V .

Proof. Define Bε to be the closed ball of radius ε centered at µ, and define gε to be the value
of g on the boundary of Bε. Consider the ratio P(W ∈ Bε)/P(W 6∈ Bε); the normalizing
constant

∫
qg dγ cancels out. Then because of the assumed shape of g, the numerator

integrand is lower bounded by qgε, while the denominator integrand is upper bounded by
qgε. Canceling the common gε gives

P(W ∈ Bε)
P(W 6∈ Bε)

≥ P(U ∈ Bε)
P(U 6∈ Bε)

Because x
1−x is a monotonic transformation, we have P(W ∈ Bε) ≥ P(U ∈ Bε), true for any

ε, which implies the desired stochastic inequality.

Lemma 4.10. Let θ = (µ1, . . . , µk) with each µj ∈ Rd indexing a component mean of an
equal-weighted k-component GRBM Pθ. Let δ = (δ1, . . . , δk) where each δj ∈ Rd has norm
bounded by a. Then

|DB(P, Pθ+δ)−DB(P, Pθ)| ≤ 2ka

[
a+ E‖X̃ − EX‖+ max

j
‖µj − EX‖

]
where X ∼ P and X̃ has density proportional to

√
p. Additionally, if each δj is random

with expectation zero, then

E log
1

pθ+δ(x)
− log

1

pθ(x)
≤ a2/2σ2.

Proof. The deviation is bounded by the supremum absolute value of the derivative along
the path from θ to θ+ δ. (Let p denote the part of the density of P that is continuous with
respect to Lebesgue measure.)

d

dt
DB(P, Pθ+tδ) =

d

dt
− 2 log

∫ √
p(x)(1/2πσ2)d/4

√
1
k

∑
j

e−‖x−(µj+tδj)‖2/2σ2
dx

= −2

∫ √
p(x)

∑
j e
−‖x−(µj+tδj)‖2/2σ2

δ′j(x− (µj + tδj))√∑
i e
−‖x−(µi+tδi)‖2/2σ2

∫ √
p(y)

√∑
i e
−‖y−(µi+tδi)‖2/2σ2dy

dx
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Use Cauchy-Schwarz to bound its absolute value.∣∣∣∣ ddtDB(P, Pθ+tδ)

∣∣∣∣ ≤ 2
∑
j

∫ √
p(x)e−‖x−(µj+tδj)‖2/2σ2‖δj‖‖x− (µj + tδj)‖√∑

i e
−‖x−(µi+tδi)‖2/2σ2

∫ √
p(y)

√∑
i e
−‖y−(µi+tδi)‖2/2σ2dy

dx

≤ 2

∫ ∑
j

√
p(x)e−‖x−(µj+tδj)‖2/2σ2‖δj‖‖x− (µj + tδj)‖√

e−‖x−(µj+tδj)‖2/2σ2
∫ √

p(y)
√
e−‖y−(µj+tδj)‖2/2σ2

dy
dx

= 2
∑
j

∫ √
p(x)e−‖x−(µj+tδj)‖2/4σ2‖δj‖‖x− (µj + tδj)‖∫ √

p(y)e−‖y−(µj+tδj)‖2/4σ2
dy

dx

≤ 2
∑
j

‖δj‖EX̃∼√p‖X̃ − (µj + tδj)‖

≤ 2
∑
j

‖δj‖
[
EX̃∼√p‖X̃ − EX‖+ ‖µj − EX‖+ ‖δj‖

]
by Lemma 4.9. (X̃ ∼ √p should be understood to mean the normalized version of

√
p.)

For the second part, we use [Brinda, 2018, Cor B.0.3], which is a form of Hölder’s
inequality.

E− log pθ+δ(x) = E− log 1
k

∑
j

e−‖x−(µj+δj)‖2/2σ2

≤ − log 1
k

∑
j

e−E‖x−(µj+δj)‖2/2σ2

= − log 1
k

∑
j

e−(‖x−µj‖2+E‖δj‖2)/2σ2

≤ − log 1
k

∑
j

e−‖x−µj‖
2/2σ2

+ a2/2σ2

Proof of Theorem 3.1. Invoke [Brinda, 2018, Thm 2.2.1] with pseudo-penalty

L(θ) =
√
n
k

∑
j

‖µj − EX‖2

≤
√
nmax

j
‖µj − EX‖2.

By Lemma 4.4, both the greedy and true likelihood-maximizing component means are in
the convex hull of the data, each ‖µj − EX‖ is bounded by maxi ‖Xi − EX‖. Lemma 4.8
implies

EL(θ̂)

n
≤ (1 + log n)5σ2

P√
n

.

The summation part of [Brinda, 2018, Thm 2.2.1] can be handled by using integration
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grids Θε
(k) ⊆ Θ(k) = Rdk, as described in [Brinda, 2018, Sec 2.2].7

∑
k≥1

e−
1
2L(k)

∑
θε∈Θε(k)

e−
√
n

2k ‖µj−EX‖
2

=
∑
k≥1

e−
1
2L(k)

(√
2πk

εn1/4

)dk
. (3)

Any penalty of at least 2dk log(2
√

2πk/εn1/4) results in a summation no greater than 1.
The continuous optimization result is achieved by bounding the discrepancy from the grid

within each model of the model class. Define θ̂k ∈ Rdk to index the MLE (or greedy MLE)
within Θ(k). As demonstrated in [Brinda, 2018, Sec 2.2], we lower bound the infimum over

the grid by an expectation for random θ̂k+δ(k) using a distribution for δ(k) = (δ1, . . . , δk) on

neighboring grid-points that has mean θ̂k. The pseudo-penalty’s contribution to expected
discrepancy is

1
n [EL(θ̂k + δ(k))− L(θ̂k)] = 1

n [
√
n
k E‖δ(k)‖2]

≤ 4ε2d/
√
n

using the bias-variance decomposition of the random δ(k) ∈ Rdk and the fact that each
‖δj‖ ≤ 2ε

√
d.

The two remaining expected discrepancy terms are bounded by Lemma 4.10. First, the
expected discrepancy of DB is bounded by

4kε
√
d

[
2ε
√
d+ E‖X̃ − EX‖+ max

j
‖Xi − EX‖

]
.

To further bound the maximum deviation term, use z ≤ (1 + z2)/2 along with Lemma 4.8.
Finally, the log-likelihood discrepancy is bounded by

2ε2d/σ2.

Let ε = 1
2.23k

√
n

. (Note that if we knew a Bhattacharyya divergence discrepancy bound

proportional to 1/ε2, then we could use ε = n−1/4; in that case, the penalty would not need
to involve n.)

One can confirm that the penalty is large enough to eliminate the summation term:

2dk log(2
√

2πk/εn1/4) = 2dk log(4.46
√

2πk3/2n1/4)

< 3dk log 5nk.

Thus, after rounding up, we have established that

EDB(P, Pθ̂) ≤ R
(n)
Θ,L(P ) +

d(1 + log n)√
n

[
10σ2

P + 1
σ2 + 2E‖X̃ − EX‖+ 3.1

]
where R denotes expected redundancy as used in Brinda [2018].

7We will find that we want ε to depend on k; we will use increasingly refined discretizations for the more
complex models.
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Finally, we bound the expected redundancy using Theorem 2.7 then bound the infimum
over k by comparison to the particular choice k = d

√
ne ≤

√
2n.

R(n)
Θ,L(P ) = E

Xn
iid∼P

[
1

n

∑
i

log
p(Xi)

pθ̂(Xi)
+

L(θ̂)

n

]

= Emin
k

[
1

n

∑
i

log
p(Xi)

pθ̂k(Xi)
+

L(k)

n

]

≤ inf
k

[
E

1

n

∑
i

log
p(Xi)

pθ̂k(Xi)
+

L(k)

n

]

≤ inf
k

[
D(P‖C(Φ)) +

(1 + log k)(1 + log n)η2
Φ(P )

k
+

L(k)

n

]
≤ D(P‖C(Φ)) +

(1 + logd
√
ne)(1 + log n)η2

Φ(P )

d
√
ne

+
L(d
√
ne)

n

≤ D(P‖C(Φ)) +
(1 + log n)2η2

Φ(P )√
n

+
L(
√

2n)

n

≤ D(P‖C(Φ)) +
η2

Φ(P )√
n

+
8.3d(1 + log n)2

√
n

For the probabilistic result, compare to the proof of [Brinda, 2018, Thm 2.1.3]. To get
the constant factor 3, we used z ≤ .45 + .56z2 for the norm of ‖Xi − EX‖2.

The final conclusion of the theorem, which results from bounding D(P‖C(Φ)), follows
from Lemma 4.5.

We now show that, if σ � (log n)−1/8, then EDB(P, Pθ̂) tends to zero (albeit, at a slow
polylogarithmic rate) as the sample size n grows. This is based on showing that log η2

Φ(P ) =

O(σ−8). Recall that η2
Φ(P ) is defined as the limit infimum of (1 +

σ2
P

σ2 )c2Q(P ) + C2
Q(P ) over

all mixing distributions Q that are arbitrarily close to D(P‖C(Φ)). We only show that the
logarithm of c2Q(P ) scales as σ−8, since C2

Q(P ) is handled similarly. To this end, we work

with µ ∼ Q for which ‖µ − µ̄‖ and ‖µ − µ̄‖2 are sub-Gaussian, where we set µ̄ := Eµ∼Qµ.
This is also satisfied if, for example, µ ∼ Q has compact support. Note that

c2Q(P ) = EX∼P
Eµ∼Qφ2

µ(X)

φ̄2
Q(X)

= EX∼P
Eµ∼Qφ2

µ(X)

[Eµ∼Qφµ(X)]2

= EX∼P
Eµ∼Qe−‖X−µ‖

2/σ2

[Eµ∼Qe−‖X−µ‖2/(2σ2)]2

≤ EX∼P
Eµ∼Qe−‖X−µ‖

2/σ2

e−Eµ∼Q‖X−µ‖
2/σ2

= EX∼PEµ∼Qe−‖X−µ‖
2/σ2+Eµ∼Q‖X−µ‖2/σ2

= Eµ∼QEX∼P e−‖X−µ‖
2/σ2+Eµ∼Q‖X−µ‖2/σ2

,
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where we used Jensen’s inequality and Tonelli’s theorem for the iterated expectation ex-
change. Next, expanding squares in the exponent, we have

EX∼P e−‖X−µ‖
2/σ2+Eµ∼Q‖X−µ‖2/σ2

= EX∼P e(2〈X,µ−µ̄〉+Eµ∼Q‖µ‖2−‖µ‖2)/σ2

.

Since ‖X − EX‖ is sub-Gaussian, we have

EX∼P e2〈X,µ−µ̄〉/σ2

≤ e2‖µ−µ̄‖2σ2
P /σ

4+2〈EX,µ−µ̄〉/σ2

.

Thus, it follows that

c2Q(P ) ≤ Eµ∼Qe2‖µ−µ̄‖2σ2
P /σ

4+2〈EX,µ−µ̄〉/σ2+Eµ∼Q‖µ‖2/σ2−‖µ‖2/σ2

. (4)

Finally, if ‖µ − µ̄‖ and ‖µ − µ̄‖2 are both sub-Gaussian, then the logarithm of the upper
bound in (4) is O(σ−8).
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