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By considering a rich class of models with appropriately devised penalties, density esti-

mators can be designed to naturally adapt to the complexity revealed by the data. This

dissertation explores approximation, estimation, and computation properties of Gaussian

mixtures to perform this type of adaptive estimation. For simplicity and clarity of ex-

position, we use equal weights and a fixed radial covariance, a model that we will call

Gaussian radial basis mixtures (GRBMs). First, we generalize the MDL redundancy risk

bound method of Barron and Cover [1991] to arbitrary penalties. Then we extend mix-

ture redundancy bounds of Li [1999] to the case of unconstrained parameter spaces. These

results together allow us to establish an exact risk bound for penalized likelihood GRBM

estimation. Finally, simulations are performed to compare algorithms for optimizing the

likelihood.
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Chapter 1

Introduction

Gaussian mixtures are a popular family used by data analysts to estimate an unknown

density when the data-generating mechanism is a priori thought to comprise k distinct

sources, where k may be known or unknown. Each “component” Gaussian in the estimate

is typically interpreted as the distribution of data coming from a corresponding source. The

weight on a component is interpreted as the probability that a new observation comes from

the corresponding source. The (penalized or unpenalized) maximum likelihood estimate

(MLE) is often approximated by the Expectation Maximization (EM) algorithm. Alter-

natively, one may select the predictive mixture arising from a Bayesian posterior (which

does not have a closed form) or a variational approximation thereof (which does have a

closed form) as approximated by the mean field algorithm. Recently, algorithms have been

developed to compute an approximate method of moments estimator.

Technically, a Gaussian kernel density estimate (KDE) is also a Gaussian mixture es-

timate that has k = n equally weighted components with their means at the data points

and all sharing the same fixed covariance. The KDE is not interpreted in terms of data-

generating sources; its objective is only to approximate the overall data-generating density.

The estimate is immediate, unlike traditional Gaussian mixture estimates which can be com-

putationally challenging. However, KDEs suffer from the curse of dimensionality: volume

increases exponentially with dimension, so the data points become increasingly sparse in

high dimensions. In other words, for a KDE to perform well, it needs sample size increasing

exponentially with dimension.
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As a “compromise” between the two approaches, consider Gaussian radial basis mixture

(GRBM) estimation. We restrict ourselves to equally-weighted mixtures from {N(µ, σ2Id) :

µ ∈ Rd} for a fixed known σ2 with the sole aim of approximating the data-generating density

well rather than trying to represent the data-generating mechanism in an interpretable way.

Ordinary Gaussian mixture estimation algorithms are used, but they become slightly simpler

to compute and to analyze with the GRBM restrictions of equal weights and fixed radial

covariance. Notice that any rationally-weighted mixture of the radial basis functions can be

achieved by an equally-weighted mixture if enough components are included. Compared to

ordinary Gaussian mixture estimation, GRBM estimation substitutes quantity for quality,

but it manages to avoid the curse of dimensionality that plagues its KDE cousin.

Over the course of this dissertation, we will establish new risk bounds for penalized

maximum likelihood GRBM estimation and experiment with algorithms for performing the

optimization.

Chapter 2 extends the minimum description length (MDL) method for bounding the

statistical risk of penalized likelihood estimators on a countable model. The usual formula-

tion of the MDL risk bound does not apply to unpenalized maximum likelihood estimation

or procedures with exceedingly small penalties. We point out a more general inequality

that holds for arbitrary penalties by adding a corrective term. In addition, this approach

makes it possible to derive exact risk bounds of order 1/n for iid parametric models, which

improves on the order (log n)/n resolvability bounds. We also describe how our bounds can

be extended to penalized likelihood estimation over continuous models by comparison to a

discrete grid, a pattern well-established for the resolvability bound; we demonstrate with

the Gaussian location family.

An important term in the MDL risk bounds is the estimator’s expected redundancy.

Chapter 3 builds on the work of Li [1999] to bound expected redundancy and approximation

error of mixtures. Li established order 1/k relative entropy approximation error of k-

component mixtures from families that have a positive infimum density. Most densities of

interest, including Gaussians, have an infimum of zero, and therefore do not satisfy Li’s

condition, though a truncated version does. We show that the desired bound on expected

redundancy rate does hold for Gaussians if one uses a different definition for the data-
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generating distribution’s “complexity” constant.

Chapter 4 uses the risk bound method of Chapter 2 together with an expected redun-

dancy result from Chapter 3 to derive a bound of order (log n)/n on the statistical risk of

penalized maximum likelihood GRBM estimation with a prescribed penalty on the number

of parameters and no penalty on the sizes of those parameters.

In Chapter 5, we consider a variety of algorithms for initializing EM to find the likelihood

maximizer of GRBMs. We first introduce a promising new internal annealing algorithm for

approximately sampling from the normalized likelihood before describing the mean field

procedure and a method of third moments. Finally, their performances for likelihood max-

imization are compared via simulation.

The three Appendix chapters make short commentaries that are relevant to earlier chap-

ters, but may also be of more general interest in their own right. Chapter A describes the

compensation and reverse compensation identities, which can be thought of as bias-variance

decompositions for the relative entropy of a random distribution. Chapter B points out that

Hölder’s inequality can be generalized to an identity with an information-theoretic interpre-

tation. Lastly, Chapter C provides a justification and formalism for treating measurability

as a secondary concern when dealing with probabilities and expectations.

Within each chapter, the proofs are collected in a section at the end. All results labeled

lemma or theorem have formal proofs, while corollaries are explained informally within the

text if needed.
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Chapter 2

Risk of penalized likelihood

estimators1

A remarkably general method for bounding the statistical risk of penalized likelihood esti-

mators comes from work on two-part coding, one of the minimum description length (MDL)

approaches to statistical inference. Two-part coding MDL prescribes assigning code-lengths

to a model (or model class) then selecting the distribution that provides the most efficient

description of one’s data [Rissanen, 1978]. The total description length has two parts: the

part that specifies a distribution within the model (as well as a model within the model

class if necessary) and the part that specifies the data with reference to the specified distri-

bution. If the code-lengths are exactly Kraft-valid, this approach is equivalent to Bayesian

maximum a posteriori (MAP) estimation, in that the two parts correspond to log reciprocal

of prior and log reciprocal of likelihood respectively. More generally, one can call the part

of the codelength specifying the distribution a penalty term; it is called the complexity in

MDL literature.

Let (Θ,L) denote a discrete set indexing distributions along with a complexity function.

With X ∼ P , the (point-wise) redundancy of any θ ∈ Θ is its two-part codelength minus

log(1/p(X)), the codelength one gets by using P as the coding distribution. 2 We define

1. Much of this chapter is adapted from [Brinda and Klusowski, 2018, Sec 1, 2, and Appendix]

2. For now, we mean that P governs the entirety of the data. The notion of sample size and iid assumptions
are not essential to the bounds, as will be seen in the statement of Theorem 2.1.1. Specialization to iid data

4



an estimator’s expected redundancy for P to be3

Rθ̂,L(P ) := EX∼P
[
log

p(X)

pθ̂(X)
+ L(θ̂)

]

or in the context of iid dataXn ∼ Pn and iid modeling {Pnθ : θ ∈ Θ}, its expected redundancy

rate is denoted

R(n)

θ̂,L
(P ) :=

1

n
E
Xniid∼P

[∑
i

log
p(Xi)

pθ̂(Xi)
+ L(θ̂)

]
.

In penalized maximum likelihood estimation (for instance, in two-part MDL), the estimator

is defined to be the minimizer of the quantity inside the expectation. In that case, we can

bound the expected redundancy by moving the expectation through the minimum, defining

RΘ,L(P ) := inf
θ∈Θ
{D(P‖Pθ) + L(θ)}

and

R(n)
Θ,L(P ) := inf

θ∈Θ

{
D(P‖Pθ) +

L(θ)

n

}
.

There may be a θ∗ ∈ Θ that minimizes expected D(P‖Pθ) + L(θ); it is the average-case

optimal representative from (Θ,L) when the true distribution is P . Its relative entropy

plus penalty is an upper bound for the penalized maximum likelihood estimator’s expected

redundancy.

Barron and Cover [1991] showed that if the complexity function is large enough, then

an estimator’s statistical risk is bounded by its expected redundancy. In particular, the

penalized likelihood estimator outperforms the best-case average representative; that result

for iid modeling is stated in (2.2) below.4

will be discussed thereafter.

3. Brinda and Klusowski [2018] only introduces RΘ,L(P ) and deals with penalized maximum likelihood
estimators. However, more generality is needed for our GRBM risk bound in Theorem 4.0.1.

4. Throughout the paper, we will refer to this inequality as “the resolvability bound,” but realize that there
are a variety of related resolvability bounds in other contexts. They involve comparing risk to a codelength
and lead to bounds that are suboptimal by a logn factor.

5



There are a number of attractive features of the resolvability bound; we will highlight

four. One of the most powerful aspects of the resolvability bound is the ease with which

it can be used to devise adaptive estimation procedures for which the bound applies. For

instance, to use a class of nested models rather than a single model, one only needs to tack

on an additional penalty term corresponding to a codelength used to specify the selected

model within the class.

Another nice feature is its generality: the inequality statement only requires that the

data-generating distribution has finite relative entropy to some probability measure in the

model.5 In practice, the common assumptions of other risk bound methods, for instance,

that the generating distribution belongs to the model, are unlikely to be exactly true.

A third valuable property of the bound is its exactness for finite samples. Many risk

bound methods only provide asymptotic bounds. But such results do not imply anything

exact for a data analyst with a specific sample.

Lastly, the resolvability bound uses a meaningful loss function: α-Renyi divergence

[Rényi, 1961] with α ∈ (0, 1). For convenience, we specialize our discussion and our present

work to Bhattacharyya divergence [Bhattacharyya, 1943] which is the 1
2 -Renyi divergence.

DB(P,Q) := 2 log
1

A(P,Q)

where A denotes the Hellinger affinity

A(P,Q) :=

∫ √
p(x)q(x)dx

= EX∼P

√
q(X)

p(X)
.

Like relative entropy, DB decomposes product measures into sums; that is,

A(Pn, Qn) = A(P,Q)n thus DB(Pn, Qn) = nDB(P,Q).

Bhattacharyya divergence is bounded below by squared Hellinger distance (using log 1/z ≥

5. Admittedly, the bound does not have the desired asymptotic behavior when the model is misspecified.
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1−z) and above by relative entropy (using Jensen’s inequality). Importantly, it has a strictly

increasing relationship with squared Hellinger distance DH , which is an f -divergence:

DB = 2 log
1

1−DH/2

As such, it inherits desirable f -divergence properties such as the data processing inequal-

ity. Also, it is clear from the definition that DB is parametrization-invariant. For many

more properties of DB, including its bound on total variation distance, see van Erven and

Harremoës [2014].

Next, we make note of some of the limitations of the resolvability bound. One complaint

is that it is for discrete parameter sets, while people generally want to optimize penalized

likelihood over a continuous parameter space. In practice, one typically selects a parameter

value that is rounded to a fixed precision, so in effect the selection is from a discretized space.

However, for mathematical convenience, it is nice to have risk bounds for the theoretical

optimizer. A method to extend the resolvability bound to continuous models was introduced

by Barron et al. [2008]; in that paper, the method was specialized to estimation of a log

density by linear combinations from a finite dictionary with an l1 penalty on the coefficients.

More recently, Chatterjee and Barron worked out the continuous extension for Gaussian

graphical models (building on Luo [2009]) with l1 penalty assuming the model is well-

specified and for linear regression with l0 penalty assuming the true error distribution

is Gaussian. These results are explained in more detail by Chatterjee [2014], where the

extension for the l1 penalty for linear regression is also shown, again assuming the true

error distribution is Gaussian.

Another limitation is that the resolvability bound needs a large enough penalty; it must

have a finite Kraft sum. This paper provides a more general inequality that escapes such

a requirement and therefore applies even to unpenalized maximum likelihood estimation.

The resulting bound retains the four desirable properties we highlighted above, but loses

the coding and resolvability interpretations.

Finally, the resolvability bounds for smooth parametric iid modeling are of order (log n)/n

and cannot be improved, according to Rissanen [1986], whereas under regularity conditions
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(for which Bhattacharyya divergence is locally equivalent to one-half relative entropy, ac-

cording to Barron et al. [2008]) the optimal Bhattacharyya risk is of order 1/n [Barron

and Hengartner, 1998]. Our variant on the resolvability method leads to the possibility of

deriving exact bounds of order 1/n.

Progress toward weakening the penalty requirements and establishing order 1/n risk

bounds has previously come from a line of work starting with Zhang [2006]. He established

a more general resolvability risk bound for “posterior” distributions on the parameter space.

Implications for penalized MLEs come from forcing the “posteriors” to be point-masses. He

derives risk bounds that have the form of R(n)
Θ,L(P ) plus a “corrective” term, which is

comparable to the form of our results. Indeed, as we will point out, one of our corollaries

nearly coincides with [Zhang, 2006, Thm 4.2] but works with arbitrary penalties.

The trick we employ is to introduce an arbitrary function L, which we call a pseudo-

penalty, that adds to the penalty L; strategic choices of pseudo-penalty can help to control

the “penalty summation” over the model. The resulting risk bound has an additional EL(θ̂)

term that must be dealt with.

In Section 2.1, we prove our more general version of the resolvability bound inequality

using a derivation closely analogous to the one by Li [1999]. We then explore corollaries

that arise from various choices of pseudo-penalty. Section 2.2 extends this thinking to

penalized likelihood over continuous models, following the technique from Barron et al.

[2008]; a specific result is given for estimating Gaussian location. Chapter 4 explains how

our approach applies in the context of adaptive modeling and demonstrates it for GRBMs.

Every result labeled a Theorem or Lemma has a formal proof at the end of this section.

Any result labeled a Corollary is an immediate consequence of previously stated results and

thus no formal proof is provided. For any random vector X, the notation CX means the

covariance matrix, while VX represents its trace E‖X − EX‖2. The notation λj(·) means

the jth eigenvalue of the matrix argument. Whenever a capital letter has been introduced

to represent a probability distribution, the corresponding lower-case letter will represent a

density for the measure with respect to either Lebesgue or counting measure. The penalized

MLE is the (random) parameter that maximizes log-likelihood minus penalty. The notation

D(P‖Θ) represents the infimum relative entropy from P to distributions indexed by the

8



model Θ.

2.1 Models with countable cardinality

Let us begin with countable (e.g. discretized) models, which were the original context for the

MDL penalized likelihood risk bounds. We will show that a generalization of that technique

works for arbitrary penalties. The only assumption we need is that for any possible data,

there exists a (not necessarily unique) minimizer of penalized likelihood.6 This existence

requirement will be implicit throughout our paper. Theorem 2.1.1 gives a general result

that is agnostic about any structure within the data; the consequence for iid data with

sample size n is pointed out after the proof.

Theorem 2.1.1. Let X ∼ P , and let θ̂ be an estimator over Θ indexing a countable model

with penalty L. Then for any L : Θ→ R,

EDB(P, Pθ̂) ≤ Rθ̂,L(P ) + 2 log
∑
θ∈Θ

e−
1
2 [L(θ)+L(θ)] + EL(θ̂).

Suppose now that the data comprise n iid observations and are modeled as such; in

other words, the data has the form Xn ∼ Pn, and the model has the form {Pnθ : θ ∈ Θ}.

Because DB(Pn, Pn
θ̂

) = nDB(P, Pθ̂) and D(Pn‖Pnθ ) = nD(P‖Pθ), we can divide both sides

of Theorem 2.1.1 by n to reveal the role of sample size in this context:

EDB(P, Pθ̂) ≤ R
(n)

θ̂,L
(P ) +

2 log
∑

θ∈Θ e
−1

2 [L(θ)+L(θ)] + EL(θ̂)

n
.

We will see three major advantages to Theorem 2.1.1. The most obvious is that it can

handle cases in which the sum of exponential negative half penalties is infinite; unpenal-

ized estimation, for example, has L identically zero. One consequence of this is that the

resolvability method for minimax risk upper bounds can be extended to models that are

not finitely covered by relative entropy balls. We will also find that Theorem 2.1.1 enables

6. We will say “the” penalized MLE, even though we do not require uniqueness; any scheme can be used
for breaking ties.
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us to derive exact risk bounds of order 1/n rather than the usual (log n)/n resolvability

bounds.

In many cases, it is convenient to have only the L function in the summation. Substi-

tuting L−L as the pseudo-penalty in Theorem 2.1.1 gives us a corollary that moves L out

of the summation.

Corollary 2.1.2. Let X ∼ P , and let θ̂ be an estimator over Θ indexing a countable model

with penalty L. Then for any L : Θ→ R,

EDB(P, Pθ̂) ≤ Rθ̂,L(P ) + 2 log
∑
θ∈Θ

e−
1
2L(θ) + EL(θ̂)− EL(θ̂).

The iid data and model version is

EDB(P, Pθ̂) ≤ R
(n)
Θ,L(P ) +

2 log
∑

θ∈Θ e
−1

2L(θ) + EL(θ̂)− EL(θ̂)

n
.

We will use the term pseudo-penalty for the function labeled L in either Theorem 2.1.1 or

Corollary 2.1.2. Note that L is allowed to depend on P but not on the data.

A probabilistic loss bound can also be derived for the difference between the loss and

the redundancy plus pseudo-penalty.

Theorem 2.1.3. Let X ∼ P , and let θ̂ be an estimator over Θ indexing a countable model

with penalty L. Then for any L : Θ→ R,

P

{
DB(P, Pθ̂)−

[
log

p(X)

pθ̂(X)
+ L(θ̂) + L(θ̂)

]
≥ t
}
≤ e−t/2

∑
θ∈Θ

e−
1
2 [L(θ)+L(θ)].

For iid data Xn iid∼ P and an iid model, Theorem 2.1.3 implies

P

{
DB(P, Pθ̂)−

1

n

[∑
i

log
p(Xi)

pθ̂(Xi)
+ L(θ̂) + L(θ̂)

]
≥ t

}
≤ e−nt/2

∑
θ∈Θ

e−
1
2 [L(θ)+L(θ)].

Several of our corollaries have L and L designed to make
∑

θ∈Θ e
−1

2 [L(θ)+L(θ)] ≤ 1. In

such cases, the difference between loss and the point-wise redundancy plus pseudo-penalty

is stochastically less than an exponential random variable.
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Often the countable model of interest is a discretization of a continuous model. Given

any ε > 0, an ε-discretization of Rd is v + εZd, by which we mean {v + mε : m ∈ Zd} for

some v ∈ Rd. An ε-discretization of Θ ⊆ Rd is a set of the form Θ∩ (v+ εZd). A discussion

of the behavior of R(n)
Θ,L(P ) in that context is provided later in this section.

2.1.1 Choices of pseudo-penalty

To derive useful consequences of the above results, we will explore some convenient choices of

pseudo-penalty: zero, Bhattacharyya divergence, log reciprocal pmf of θ̂, quadratic forms,

and the penalty. We specialize to the iid data and model setting for the remainder of

this chapter to highlight the fact that many of the exact risk bounds we derive are of

order 1/n in that case; we also specialize to penalized likelihood estimators, since practical

bounds on expected redundancy are immediate. However, our main theorem for GRBMs

(Theorem 4.0.1) relies on the expected redundancy version.

Zero as pseudo-penalty

Setting L to zero gives us the traditional resolvability bound, which we review in this section.

Corollary 2.1.4. Assume Xn iid∼ P , and let θ̂ be the penalized MLE over Θ indexing a

countable iid model with penalty L. Then

EDB(P, Pθ̂) ≤ R
(n)
Θ,L(P ) +

2 log
∑

θ∈Θ e
−1

2L(θ)

n
.

The usual statement of the resolvability bound [Barron et al., 2008] assumes L is at least

twice a codelength function, so that it is large enough for the sum of exponential terms to

be no greater than 1. That is,

∑
θ∈Θ

e−
1
2L(θ) ≤ 1 (2.1)

implies

EDB(P, Pθ̂) ≤ R
(n)
Θ,L(P ). (2.2)

11



The quantity on the right-hand side of (2.2) is called the index of resolvability of (Θ,L)

for P at sample size n. Any corresponding minimizer θ∗ ∈ Θ is considered to index an

average-case optimal representative for P at sample size n.

In fact, for any finite sum z :=
∑

θ∈Θ e
−1

2L(θ), the maximizer of the penalized likelihood

is also the maximizer with penalty L̃ := L+ 2 log z. Thus one has a resolvability bound of

the form (2.2) with the equivalent penalty L̃, which satisfies (2.1) with equality.

Additionally, the resolvability bounds give an exact upper bound on the minimax risk

for any model Θ that can be covered by finitely many relative entropy balls of radius ε2;

the log of the minimal covering number is called the KL-metric entropy M(ε). These balls’

center points are called a KL-net ; we will denote the net by Θε. With data Xn iid∼ Pθ∗ for

any θ∗ ∈ Θ, the MLE restricted to Θε has the resolvability risk bound

EDB(Pθ∗ , Pθ̂) ≤ inf
θ∈Θε

{
D(Pθ∗‖Pθ) +

2M(ε)

n

}
= inf

θ∈Θε
D(Pθ∗‖Pθ) +

2M(ε)

n

≤ ε2 +
2M(ε)

n
.

If an explicit bound for M(ε) is known, then the overall risk bound can be optimized over

the radius ε — see for instance [Barron et al., 2008, Section 1.5].

Because this approach to upper bounding minimax risk requires twice-Kraft-valid code-

lengths, it only applies to models that can be covered by finitely many relative entropy balls.

However, Corollary 2.1.2 reveals new possibilities for establishing minimax upper bounds

even if the cover is infinite. Given any L, one can use any constant penalty that is at least

as large as 2 log
∑
e−

1
2L(θ) + EL(θ̂) where θ̂ is the unpenalized MLE on the net and the

summation is taken over those points.7 For a minimax result, one still needs this quantity

to be uniformly bounded over all data-generating distribution θ∗ ∈ Θ.

7. Putting L = 0 into either Theorem 2.1.1 or Corollary 2.1.2 would give us the same idea.
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Bhattacharyya divergence as pseudo-penalty

Important corollaries8 to Theorems 2.1.1 and 2.1.2 come from setting the pseudo-penalty

equal to αDB(P, Pθ); the expected pseudo-penalty is proportional to the risk, so that term

can be subtracted from both sides. For the iid scenario, we also use the product property

of Hellinger affinity: A(Pn, Pnθ ) = A(P, Pθ)
n.

Corollary 2.1.5. Assume Xn iid∼ P , and let θ̂ be the penalized MLE over Θ indexing a

countable iid model with penalty L. Then for any α ∈ [0, 1],

EDB(P, Pθ̂) ≤
1

1− α

R(n)
Θ,L(P ) +

2 log
∑

θ∈Θ e
−1

2L(θ)A(P, Pθ)
αn

n

 .
Corollary 2.1.6. Assume Xn iid∼ P , and let θ̂ be the penalized MLE over Θ indexing a

countable iid model with penalty L. Then for any α ∈ [0, 1],

EDB(P, Pθ̂) ≤
1

1− α

[
R(n)

Θ,L(P ) +
2 log

∑
θ∈ΘA(P, Pθ)

αn − EL(θ̂)

n

]
.

For simplicity, the corollaries throughout this subsection will use α = 1/2.

Consider a penalized MLE selected from an ε-discretization of a continuous parameter

space; as the sample size increases, one typically wants to shrink ε to make the grid more

refined. Examining Corollaries 2.1.5 and 2.1.6, we see two opposing forces at work as n

increases: the grid-points themselves proliferate, while the nth power depresses the terms

in the summation. For more details, including application to location families, see [Brinda

and Klusowski, 2018, Sec 2.2].

Log reciprocal pmf of θ̂ as pseudo-penalty

The Bhattacharyya pseudo-penalty had an expectation that was easy to handle; we only

had to worry about the resulting log summation. Now we will select a pseudo-penalty with

the opposite effect. We can eliminate Corollary 2.1.2’s log summation term by letting L

be twice a codelength function. The smallest resulting EL(θ̂) comes from setting L to be

8. Our Corollary 2.1.5 was inspired by the very closely related result of [Zhang, 2006, Thm 4.2].
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two times the log reciprocal of the probability mass function of θ̂. This expectation is the

Shannon entropy H of the penalized MLE’s distribution (i.e. the image measure of P under

the Θ-valued deterministic transformation θ̂).

Corollary 2.1.7. Let Xn iid∼ P , and let θ̂ be a penalized MLE over all θ ∈ Θ indexing a

countable iid model. Then

EDB(P, Pθ̂) ≤ R
(n)
Θ,L(P ) +

2H(θ̂)− EL(θ̂)

n
.

It is known that the risk of the MLE is bounded by the log-cardinality of the model

(e.g. Li [1999]); Corollary 2.1.7 implies a generalization of this fact for penalized MLEs:

EDB(P, Pθ̂) ≤ R
(n)
Θ,L(P ) +

2 log |Θ| − EL(θ̂)

n
.

Importantly, Corollary 2.1.7 also applies to models of infinite cardinality.

Quadratic form as pseudo-penalty

Other simple corollaries come from using a quadratic pseudo-penalty L(θ) = (θ−Eθ̂)′M(θ−

Eθ̂) for some positive definite matrix M . The expected pseudo-penalty is then

EL(θ̂) = trMCθ̂

where Cθ̂ denotes the covariance matrix of the random vector θ̂(Xn) with Xn iid∼ P . For

the log summation term, we note that

∑
θε∈Θε

e−(θε−Eθ̂)′M(θε−Eθ̂) ≤
∑
θε∈Θε

e−λd(M)‖θε−Eθ̂‖2

≤

(
1 +

2
√
π

ε
√
λd(M)

)d

by Lemma 2.3.6. Using αId as M gives us Corollary 2.1.8.

Corollary 2.1.8. Assume Xn iid∼ P , and let θ̂ be the penalized MLE over an ε-discretization

14



Θε ⊆ Θ ⊆ Rd indexing an iid model with penalty L. Then for any α ≥ 0,

EDB(P, Pθ̂) ≤ R
(n)
Θε,L(P ) +

2d log(1 + 2
√
π

ε
√
α

) + αVθ̂ − EL(θ̂)

n
.

As described in Section 2.2, one gets desirable order 1/n behavior from R(n)
Θε,L(P ) by

using ε proportional to 1/
√
n. For either of these two corollaries above to have order 1/n

bounds, the numerator of the second term should be stable in n. In Corollary 2.1.8, one

sets α proportional to 1/ε2 and thus needs Vθ̂ to have order 1/n. In many cases, such

as ordinary MLE with an exponential family, the covariance matrix of the optimizer over

Θ is indeed bounded by a matrix divided by n. However, one still needs to handle the

discrepancy in behavior between the continuous and discretized estimator.

In a sense, Corollary 2.1.8 shifts the bounding problem to another risk-related quantity,

while the pseudo-penalties used in the Bhattacharyya pseudo-penalty and log reciprocal

pmf pseudo-penalty provide more direct ways of deriving exact risk bounds of order 1/n.

Penalty as pseudo-penalty

Another simple corollary to Theorem 2.1.1 uses L = αL.

Corollary 2.1.9. Assume Xn iid∼ P , and let θ̂ be the penalized MLE over Θ indexing a

countable iid model with penalty L. Then

EDB(P, Pθ̂) ≤ R
(n)
Θ,L(P ) +

2 log
∑

θ∈Θ e
−α+1

2 L(θ) + αEL(θ̂)

n
.

Bayesian MAP (maximum a posteriori) is a common penalized likelihood procedure

that has insufficient penalty for the index of resolvability bound (2.2) to be valid. In that

case, Corollary 2.1.4 applies (where L comprises the logs of the reciprocals of prior masses),

but the sum of exponential terms may be infinite. An alternative approach comes from

Corollary 2.1.9 by setting α = 1.

Corollary 2.1.10. Assume Xn iid∼ P , and let θ̂ be the MAP estimate over Θ indexing a

15



countable iid model with prior pmf q. Then

EDB(P, Pθ̂) ≤ R
(n)
Θ,log 1/q(P ) +

E log(1/q(θ̂))

n
.

For ε-discretizations, realize that q has to change as the refinement increases; thus the

second term in Corollary 2.1.10 should be considered to have order strictly larger than 1/n

in that context.

2.1.2 Simple concrete examples

When Θ indexes an exponential family, for any Pθ in the family there is a “Pythagorean”

information identity

D(P‖Pθ) = D(P‖Pθ∗) +D(Pθ∗‖Pθ)

where Pθ∗ is the rI-projection of P onto Θ; if there is the distribution in the family that

agrees with P about the expectation of the sufficient statistic, that distribution is the rI-

projection — see [Csiszár and Matúš, 2003, Thm 3 and Cor 6]. In such cases,

RΘ,L(P ) := inf
θ∈Θ
{D(P‖Pθ) + L(θ)}

= D(P‖Pθ∗) + inf
θ∈Θ
{D(Pθ∗‖Pθ) + L(θ)}

= D(P‖Pθ∗) +RΘ,L(Pθ∗).

This also holds when the model is a submodel Θε (e.g. a discretization) of an exponential

family Θ.

RΘε,L(P ) = D(P‖Pθ∗) +RΘε,L(Pθ∗)

One consequence of this is that the rI-projection of P onto Θε is the same as the rI-projection

of Pθ∗ onto Θε; to see why, consider the above identity with L = 0.

Suppose Xn iid∼ P are real-valued observations, and P is estimated by a penalized MLE
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of the standard ε-discretized Gaussian location model

{Pθ = N(θ, 1/s) : θ ∈ Θε = εZ} ⊂ {Pθ = N(θ, 1/s) : θ ∈ Θ = R}.

Suppose a squared norm penalty9 is used: L(θ) = s0
2 ‖θ‖

2 for s0 ≥ 0. If s = 0, the estimator

is the ordinary MLE; otherwise, the resulting penalized MLE is the Bayesian MAP when

using the discretized Gaussian N(0, 1/s0) as the prior for θ. According to the preceding

paragraph,

R(n)
Θε,L(P ) = D(P‖Pθ∗) + inf

θ∈Θε
{ s2(θ − EX)2 + s0

2nθ
2}.

The quantity inside the infimum is minimized at s
s+s0/n

EX ∈ R. Because the penalized

likelihood is unimodal, the minimizer on the grid is a neighboring grid-point,10 which is

within ε of the true optimizer. Using this fact, it is straightforward to derive a bound on

the infimum.

inf
θ∈Θε
{ s2(θ − EX)2 + s0

2nθ
2} ≤ s

2

[(
1− s

s+ s0/n

)2

(EX)2 + 2

(
1− s

s+ s0/n

)
ε|EX|+ ε2

]

+
s0

2n

[(
s

s+ s0/n

)2

(EX)2 + 2

(
s

s+ s0/n

)
ε|EX|+ ε2

]
(2.3)

≤
[
s2

0/s

n2
+
s0

n

]
(EX)2 +

2s0ε

n
|EX|+ s0ε

2

n
+ sε2

We will compare corrective terms that arise from three of this section’s corollaries for

bounding risk. First, Corollary 2.1.4 implies that a bound can be acquired by adding to

9. We use the squared norm notation to suggest extensions to more general Rd, even though this example
is limited to R.

10. Since the penalized likelihood is quadratic in this case, the grid’s minimzer is the nearest grid-point,
which is within ε/2 of the true optimizer. However, we will content ourselves with ε since that represents a
more typical scenario.
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R(n)
Θε,L(P ) the corrective term

2

n
log

∑
θ∈Θε

e−
s0
4 θ

2

≤ 2

n
log(1 + 2

√
π/ε
√
s0).

The Gaussian summation was bounded using Lemma 2.3.5. Overall,

EDB(P, Pθ̂) ≤ D(P‖Θ) +
s0(EX)2 + 2s0ε|EX|+ s0ε

2 + 2 log(1 + 4/ε
√
s0)

n

+
s2

0(EX)2/s

n2
+ sε2.

Secondly, we use the quadratic pseudo-penalty approach to bounding risk after upper

bounding the variance of the estimator and lower bounding the expected penalty.

When the penalized likelihood is unimodal over a one-dimensional parameter space, the

variance of the grid’s optimizer θ̂ can be conveniently bounded in terms of the variance of

the continuous model’s optimizer θ̂′. Define δ := θ̂− θ̂′, which has absolute value no greater

than ε because of unimodality.

Vθ̂ = E‖(θ̂′ + δ)− E(θ̂′ + δ)‖2

≤ 2E‖θ̂′ − Eθ̂′‖2 + 2E‖δ − Eδ‖2

≤ 2Vθ̂′ + 2ε2

using Lemma 2.3.7 and the fact that the variance of a bounded random variable is at most

half its range.

In our present case, the continuous optimizer is s
s+s0/n

X̄n (and the MLE θ̂ is the grid-

point closest to X̄n), so its variance is ( s
s+s0/n

)2VX/n for X ∼ P . For simplicity, we use

the upper bound VX/n.

The expected penalty is lower bounded using Lemma 2.3.8, which will be stated after
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this example.

EL(θ̂) =
s0

2
E‖θ̂′ + δ‖2

≥ s0

2
E(‖θ̂′‖ − ε)2

≥ s0

2
E[(θ̂′)2 − 2ε2(θ̂′)2 − 2ε4 − ε2 − 1]

≥ s0

2
[(Eθ̂′)2 − 2ε2E(θ̂′)2 − 2ε4 − ε2 − 1]

=
s0

2
[(Eθ̂′)2 − 2ε2[(Eθ̂′)2 + Vθ̂′]− 2ε4 − ε2 − 1]

Since EL(θ̂)/n gets subtracted in the risk bound, the first term can be used to eliminate

the (EX)2/n term in (2.3).

Corollary 2.1.8 with α = 1/ε2 implies the exact risk bound11

EDB(P, Pθ̂) ≤ D(P‖Θ) +
s0ε

2(EX)2 + 1+s0ε4

ε2n
VX + 2s0ε|EX|+ 4 + s0 + (1 + s0)ε2 + ε4

n

+
s2

0(EX)2/s

n2
+ sε2.

Lastly, we will try Corollary 2.1.9 with α = 1. There is a log summation term

2 log
∑
θ∈Θε

e−
s0
2
‖θ‖2 ≤ 2 log(1 +

√
2π/ε

√
s0).

And we upper bound the expected penalty by

EL(θ) =
s0

2
E(θ̂′ + δ)2

≤ s0[E(θ̂′)2 + ε2]

= s0[(EX)2 + VX/n+ ε2]

11. This risk bound monotonically increases in s0; it fails to capture any trade-off in the severity of the
penalty.
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Overall,

EDB(P, Pθ̂) ≤ D(P‖Θ) +
2s0(EX)2 + 2s0ε|EX|+ 2s0ε

2 + 2 log(1 + 3/ε
√
s0)

n

+
s2

0(EX)2/s+ VX
n2

+ sε2.

We demonstrate Corollary 2.1.5 with the exponential distributions pθ(x) = θe−θxI{x ≥

0}, defined for θ > 0. If the data-generating distribution is some Pθ∗ in the model, then

the Hellinger affinity is the geometric average of the parameters divided by their arithmetic

average.

A(Pθ∗ , Pθ) =

∫ ∞
0

√
θ∗e−θ

∗x/2
√
θe−θx/2dx

=

√
θ∗
√
θ

1
2θ
∗ + 1

2θ

For simplicity, let us confine our eventual choice of ε to be no greater than 1, in which case,

we can bound A(Pθ∗ , Pθ)
1/ε2 by A(Pθ∗ , Pθ). (This approach will not allow us to avoid the

log n in the numerator of the risk bound, but it does provide a clean demonstration of the

usefulness of Corollary 2.1.5.)

Without a penalty, these Hellinger affinities will create an unbounded summation term

over the grid {kε : k ≥ 1}. The penalty L(θ) = 2 log θ gives a clean bound that works

uniformly for θ∗ > 0.

∑
θ∈Θ

e−
1
2L(θ)A(P, Pθ) =

∑
θ∈Θ

(
1

θ

)(
2
√
θ∗
√
θ

θ∗ + θ

)

= 2
√
θ∗
∑
θ∈Θ

1√
θ(θ∗ + θ)

= 2
√
θ∗
∑
k≥1

1√
kε(θ∗ + kε)

≤ 2
√
θ∗
∫ ∞

0

1√
t(θ∗ + t)

d(t/ε)

=
2
√
θ∗

ε

(
2 tan−1(

√
t/
√
θ∗)|∞0√

θ∗

)

= 2π/ε

20



Thus, with L(θ) = 2 log θ, the exponential distribution in the ε-discretized grid that maxi-

mizes penalized likelihood has the risk bound

E
Xniid∼Pθ∗

d(Pθ∗ , Pθ̂) ≤
1

1− ε2n

[
inf
θ∈Θ

{
D(Pθ∗‖Pθ) +

2 log θ

n

}
+

2 log 2π/ε

n

]
=

1

1− ε2n

[
inf
θ∈Θ

{
log

θ∗

θ
+
θ − θ∗

θ∗
+

2

n
log θ

}
+

2

n
log

2π

ε

]
.

A rough bound on the optimum value of the objective can be obtained from Theorem 2.3.3.12

It is straight-forward to derive IPθ∗ (θ) = 1/θ2, which implies

E
Xniid∼Pθ∗

d(Pθ∗ , Pθ̂) ≤
1

1− ε2n

[
ε2

(θ∗ − ε)2
+

2

n
log θ∗ +

2

n
log

2π

ε

]

as long as θ∗ > ε (which will eventually hold). Using ε = 1/
√

2n results in an order (log n)/n

bound.

E
Xniid∼Pθ∗

d(Pθ∗ , Pθ̂) ≤
1

n

[
1

(θ∗ − 1/
√

2n)2
+ 9 + 4 log θ∗ + 2 log n

]

And because this penalized relative entropy is unimodal, the optimizer on the grid will

be within ε of n−2
n θ∗. The resulting bound is

E
Xniid∼Pθ∗

d(Pθ∗ , Pθ̂) ≤
1

1− ε2n

[
n−2
n θ∗ + ε

θ∗
− 1− log

[n−2
n θ∗ − ε]1−2/n

θ∗
+

2

n
log

2π

ε

]

≤ 1

1− ε2n

[
ε

θ∗
− log

[n−2
n θ∗ − ε]1−2/n

θ∗
+

2

n
log

2π

ε

]

≤ 2

n− 1
log 2πθ∗ +

ε

θ∗
+

2

n− 1
log

1

ε
− n− 2

n
log

[
n− 2

n
− ε

θ∗

]
.

Using ε of order 1/(n − 1) produces 1
n−1 log(n − 1) convergence. While this example does

not provide order 1/n bounds, it does show how Corollary 2.1.5 can have advantages over

our other corollaries. The procedure described here is exactly Bayesian MAP with prior

proportional to 1/θ2. However, Corollary 2.1.4 is no use, as half the penalty is not Kraft-

summable, and Corollary 2.1.10 is unable to provide a bound on the part outside the

12. To be more exact, the optimal θ over the continuum is n−2
n
θ∗, when n ≥ 2.
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infimum that works uniformly over θ∗ > 0.

2.2 Continuous parameter spaces

An analogue of Theorem 2.1.1 holds when the optimization is taken over a continuous

parameter space. As prescribed in Barron et al. [2008], one can construct a discrete grid

Θε ⊆ Θ, then try to bound the discrepancy between the penalized MLE and a selection

from the grid.

Section 2.1 dealt with discrete parameter spaces, so we did not have to worry about

the measurability of θ̂ or functions thereof. We do not much concern ourselves with mea-

surability in the present continuous context either. Zhang [2006] points to outer measure

approaches in the empirical process literature [van der Vaart and Wellner, 1996, Ch 2] as a

justification for side-stepping measurability questions, but we feel that a simpler and more

powerful convention is possible. Chapter C describes a generalization of the concept of

probability measure that affirms the reality of our inequalities and deems measurability a

secondary concern.

Theorem 2.2.1. Let X ∼ P , and let θ̂ be an estimator over Θ indexing a model. Given

any countable subset Θε ⊆ Θ,

EDB(P, Pθ̂) ≤ Rθ̂,L(P ) + 2 log
∑
θε∈Θε

e−
1
2 [L(θε)+L(θε)] + EL(θ̂)

+ 2E

log

√
pθ̂(X)e−

1
2 [L(θ̂)+L(θ̂)]

A(P, Pθ̂)
− sup
θε∈Θε

log

√
pθε(X)e−

1
2 [L(θε)+L(θε)]

A(P, Pθε)

 .
The bound is also true when expectation and infimum are interchanged in the discrep-

ancy term. If there is a maximizing grid point, then it can be thought of as an optimal

representer for P from Θε.

As before, we can state a corollary that subtracts the expected penalty rather than

involving it in the summation.

Corollary 2.2.2. Let X ∼ P , and let θ̂ be an estimator over Θ indexing a model. Given
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any countable subset Θε ⊆ Θ,

EDB(P, Pθ̂) ≤ Rθ̂,L(P ) + 2 log
∑
θε∈Θε

e−
1
2L(θε) + EL(θ̂)− EL(θ̂)

+ 2E

log

√
pθ̂(X)e−

1
2L(θ̂)

A(P, Pθ̂)
− sup
θε∈Θε

log

√
pθε(X)e−

1
2L(θε)

A(P, Pθε)

 .
Also as before, if Xn iid∼ P and the data are modeled as iid, then we can divide both

sides of the inequality by n to see that

EDB(P, Pθ̂) ≤ R
(n)

θ̂,L
+

2 log
∑

θε∈Θε
e−

1
2 [L(θε)+L(θε)] + EL(θ̂)

n

+
2

n
E

log

√
pθ̂(X

n)e−
1
2 [L(θ̂)+L(θ̂)]

A(P, Pθ̂)
n

− sup
θε∈Θε

log

√
pθε(X

n)e−
1
2 [L(θε)+L(θε)]

A(P, Pθε)
n

 .
Likewise, an iid version of Corollary 2.2.2 can be stated. A probabilistic loss bound analo-

gous to Theorem 2.1.3 holds as well; see Theorem 4.0.1 for an example.

A summation over grid points is usually harder to work out than the analogous integral

would be. But notice that in this case, the grid plays no role in the estimation; it is only

a constructed for the sake of the analysis. It does not need to exactly coincide with an

ε-discretization. This provides us with an opportunity to design the grid such that the

summation can be replaced by an integral; this trick works out most neatly when Θ = Rd.

Suppose f : Θ → R is continuous. Then by the mean value theorem, any hypercube h in

Θ of side-length ε has at least one point θh whose value at the function f(θh) equals the

average value of the function over h.

f(θh) =
1

εd

∫
h
f(θ)dθ

If one uses these θh as the grid points, then the summation is proportional to the integral.

∑
h

f(θh) =
∑
h

1

εd

∫
h
f(θ)dθ

=
1

εd

∫
Θ
f(θ)dθ
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We will call any such grid an integration grid for f . The distance from any point to its

farthest neighboring grid-point is at most 2ε
√
d.

One approach for handling the discrepancy is to bound the supremum over the grid by

the expectation with respect to a distribution on neighboring grid-points such that θ̂ is the

mean. The trick from Lemma 2.3.2 is an option if one can bound the expectation of the

largest eigenvalue of the discrepancy’s Hessian near θ̂.

Consider using a quadratic pseudo-penalty of the form L(θ) = (θ−Eθ̂)′M(θ−Eθ̂). The

resulting EL(θ̂) term is trMCθ̂. With an integration grid, the relevant integral is

∫
Rd
e−

1
2 (θ−Eθ̂)′M(θ−Eθ̂) = (2π)d/2|M |−1/2

The Hessian matrix 1
2∇∇

′L(θ) is simply M . The following result comes from using a

quadratic pseudo-penalty with M = αId. Note that adding αId to a matrix adds α to each

of its eigenvalues and therefore adds α to its largest eigenvalue.

Corollary 2.2.3. Let Xn iid∼ P , and let θ̂ be the penalized MLE over Θ = Rd indexing an iid

model. If logA(P, Pθ)/
√
pθ is twice continuously differentiable in θ, then for any α, ε > 0,

EDB(P, Pθ̂) ≤ R
(n)
Θ,L(P )− EL(θ̂)

n

+
d

n

[
log

2π

αε2
+ α

Vθ̂
d

+ ε2α+ 4ε2E sup
θ̃∈B(θ̂,ε

√
d)

λ1

(
∇∇′ log

A(P, Pθ̂)
n√

pθ̂(X
n)

)
+

]
.

In exponential family models, a condition on the sufficient statistic can guarantee Corol-

lary 2.2.3’s smoothness conditions for both pθ and A(P, Pθ). Additionally, the Hessian

simplifies in an interesting way as seen in the following identity. (The reader can refer to

Chapter A for the definition of “geometric mixture.”)

Lemma 2.2.4. Let θ be the natural parameter vector of an exponential family with an open

and convex parameter space and a twice continuously differentiable sufficient statistic vector

φ. Then pθ and A(P, Pθ) are twice continuously differentiable in θ. Furthermore, if P is
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not singular with respect to the family, then

∇∇′ log
A(P, Pθ)√
pθ(X)

= 1
4Cφ(Y )

where X ∼ P and the distribution of Y is the 1
2 -geometric mixture between P and Pθ.

This Hessian does not depend on X. The iid version of the identity has n
4Cφ(Y ).

What we really need to bound is the largest eigenvalue. Because the eigenvalues are

positive in this case, we can bound the largest eigenvalue of the covariance matrix Cφ(Y )

by its trace Vφ(Y ).

Lemma 2.2.5. Let Θ = Rd parameterize the iid Gaussian location family with covariance

σ2Id by θ = σEX∼PθX. Assume Xn iid∼ P and let θ̂ denote the MLE. If the distribution of

Y is the 1
2 -log-mixture between P and Pθ with θ ∈ B(θ̂, δ), then

E
Xniid∼P

Vφ(Y ) ≤ 2

σ2

[
VX + VX̃ + ‖EX̃ − EX‖2

]
+ 2δ2

where φ(x) = x/σ is the sufficient statistic, X ∼ P , and X̃ has density proportional to
√
p.

The above observations can be brought together to state an exact risk bound for the

unpenalized MLE of the Gaussian location N(θ, σ2Id) family with Xn iid∼ P .

EDB(P, Pθ̂) ≤ D(P‖Θ) +
d[log d+ 9 vP /σ

2] + 15

n

with vP := 1
d [VX + VX̃ + ‖EX̃ − EX‖2] where X ∼ P and X̃ has density proportional

to
√
p. To see this, use Lemma 2.2.5 with δ = 2ε

√
d and Corollary 2.2.3 with ε = 1/

√
nd

and α = 2πn = 2π/dε2. Then, use the fact that nVθ̂/d = VX/dσ2 ≤ vP /σ
2. Finally, use

1/n ≤ 1 and round numbers up to integers.

If EX is finite, then the rI-projection is N(EX,σ2Id), and thus

D(P‖Θ) = D(P‖N(EX,σ2Id)).

The purpose of this Gaussian location example is to demonstrate the continuous ex-

tension process without assumptions on the form of the data-generating distribution. It is
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useful as a “warm-up” for Theorem 4.0.1. The result itself is not important; indeed, even

without any assumptions on P , better risk bounds for Gaussian location are easy to show

(Theorems 2.3.11 and 2.3.12).

2.3 Proofs

Proof of Theorem 2.1.1. We follow the pattern of Jonathan Li’s version of the resolvabil-

ity bound proof [Li, 1999].

DB(P, Pθ̂) := 2 log
1

A(P, Pθ̂)

= 2 log

√
pθ̂(X)/p(X)e−

1
2 [L(θ̂)+L(θ̂)]

A(P, Pθ̂)
+ log

p(X)

pθ̂(X)
+ L(θ̂) + L(θ̂)

≤ 2 log
∑
θ∈Θ

√
pθ(X)/p(X)e−

1
2 [L(θ)+L(θ)]

A(P, Pθ)
+ log

p(X)

pθ̂(X)
+ L(θ̂) + L(θ̂)

We were able to bound the random quantity by the sum over all θ ∈ Θ because each of

these terms is non-negative.

We will take the expectation of both sides for X ∼ P . To deal with the first term, we

use Jensen’s inequality and the definition of Hellinger affinity.

2E log
∑
θ∈Θ

√
pθ(X)/p(X)e−

1
2 [L(θ)+L(θ)]

A(P, Pθ)
≤ 2 log

∑
θ∈Θ

E
√
pθ(X)/p(X)e−

1
2 [L(θ)+L(θ)]

A(P, Pθ)

= 2 log
∑
θ∈Θ

e−
1
2 [L(θ)+L(θ)]
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Returning to the overall inequality, we have

EDB(P, Pθ̂) ≤ 2 log
∑
θ∈Θ

e−
1
2 [L(θ)+L(θ)] + E

[
log

p(X)

pθ̂(X)
+ L(θ̂)

]
+ EL(θ̂)

= 2 log
∑
θ∈Θ

e−
1
2 [L(θ)+L(θ)] + Emin

θ∈Θ

{
log

p(X)

pθ(X)
+ L(θ)

}
+ EL(θ̂)

≤ 2 log
∑
θ∈Θ

e−
1
2 [L(θ)+L(θ)] + inf

θ∈Θ
E
{

log
p(X)

pθ(X)
+ L(θ)

}
+ EL(θ̂)

= 2 log
∑
θ∈Θ

e−
1
2 [L(θ)+L(θ)] + inf

θ∈Θ
{D(P‖Pθ) + L(θ)}+ EL(θ̂).

Proof of Theorem 2.1.3. Following the steps described in [Barron et al., 2008, Theorem

2.3], we use Markov’s inequality then bound a non-negative random variable by the sum of

its possible values.

P

{
DB(P, Pθ̂)−

[
log

p(X)

pθ̂(X)
+ L(θ̂) + L(θ̂)

]
≥ t
}

= P

{
2 log

√
pθ̂(X)/p(X)e−

1
2

[L(θ̂)+L(θ̂)]

A(P, Pθ̂)
≥ t

}

= P

{√
pθ̂(X)/p(X)e−

1
2

[L(θ̂)+L(θ̂)]

A(P, Pθ̂)
≥ et/2

}

≤ e−t/2E
√
pθ̂(X)/p(X)e−

1
2

[L(θ̂)+L(θ̂)]

A(P, Pθ̂)

≤ e−t/2
∑
θ∈Θ

e−
1
2 [L(θ)+L(θ)]

Jensen differences

For any random vector Y and any function f , we will call Ef(Y )−f(EY ) a Jensen difference.

Lemma 2.3.1. Let Y be a random vector with convex support S ⊆ Rd. If f : Rd → R is

twice continuously differentiable, then

inf
y∈S

λd(∇∇′f(y)) ≤ Ef(Y )− f(EY )

VY/2
≤ sup

y∈S
λ1(∇∇′f(y)).
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Proof. We start with a second-order Taylor expansion with Lagrange remainder.

f(Y ) = f(EY ) + (Y − EY )′∇f(EY ) + 1
2(Y − EY )′∇∇′f(Ỹ )(Y − EY )

for some Ỹ on the segment from Y to EY . By Lemma 2.3.9, the quadratic form has the

bounds

‖Y − EY ‖2λd(∇∇′f(Ỹ )) ≤ (Y − EY )′∇∇′f(Ỹ )(Y − EY ) ≤ ‖Y − EY ‖2λ1(∇∇′f(Ỹ )).

The smallest and largest eigenvalues of the Hessian at Ỹ are bounded by the infimum of

smallest eigenvalue and supremum of largest eigenvalue taken over the support of Y .

‖Y − EY ‖2 inf
y∈S

λd(∇∇′f(y)) ≤ (Y − EY )′∇∇′f(Ỹ )(Y − EY ) ≤ ‖Y − EY ‖2 sup
y∈S

λ1(∇∇′f(y))

Substituting this second-order Taylor expansion into Ef(Y )−f(EY ) gives the desired result.

Infimum on a grid

In many cases we will need to ensure that the infimum of a function on a grid of its domain

approaches the overall infimum as the grid becomes increasingly refined. Lemma 2.3.2 will

prove to be remarkably useful for such tasks.

Lemma 2.3.2. Let Θε ⊆ Θ ⊆ Rd, and assume f : Θ → R is twice continuously differen-

tiable. If θ is in the convex hull of Θε ∩B(θ, δ), then

inf
θε∈Θε

f(θε) ≤ f(θ) +
δ2

2
sup

θ̃∈B(θ,δ)

λ1(∇∇′f(θ̃))+.

Proof. We first bound the infimum over Θε by the infimum over Θε ∩ B(θ, δ). Then that

infimum is bounded by the expectation using any distribution Q on those grid-points. We

have assumed that θ is some weighted average of nearby grid-points (the ones at most

δ distance away), and we can use that same weighted averaging to define Q. Then the
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expectation of the random selection is θ, and we apply Lemma 2.3.1.

inf
θε∈Θε

f(θε) ≤ inf
θε∈Θε∩B(θ,δ)

f(θε)

≤ Eθε∼Qf(θε)

≤ f(Eθε∼Qθε) + 1
2Eθε∼Q‖θε − Eθε∼Qθε‖2 sup

θ̃∈B(θ,δ)

λ1(∇∇′f(θ̃))

≤ f(θ) + 1
2δ

2 sup
θ̃∈B(θ,δ)

λ1(∇∇′f(θ̃))

assuming λ1(∇∇′f(θ̃)) is non-negative. If the maximum eigenvalue is negative, i.e. if f is

strictly concave within the ball, then the second order term is upper bounded by zero.

Suppose Θε ⊆ Θ ⊆ Rd is an ε-discretization, as defined in Section 2.1. If Θ is convex,

then every θ in the convex hull of Θε satisfies the conditions of Lemma 2.3.2 with ε
√
d as

δ. In particular, if every dimension of Θ is either R or a closed half-line, then there is an

obvious ε-discretization that makes Lemma 2.3.2 apply for every θ ∈ Θ. For less favorably

shaped Θ, one can consider adding more grid-points “on top of” an ε-discretization.

Behavior of R(n)
Θε,L(P)

One way to bound R(n)
Θε,L(P ) is to use an approach similar to that just described for the

infimum on a grid. Suppose pθ(x) is twice continuously differentiable in θ. We define a type

of Fisher “cross-information” matrix

IP (θ̃) := EX∼P∇∇′
[
log

1

pθ(X)

]
θ=θ̃

where the Hessian is taken with respect to θ. Note that if pθ represents an exponential

family, then P does not play a role. In that case, IP (θ̃) reduces to the ordinary Fisher

information matrix.

Let B(θ, δ) denote the closed Euclidean ball centered at θ with radius δ, and let λj(·)

denote the jth largest eigenvalue of its matrix argument.

Theorem 2.3.3. Let Θε ⊆ Θ ⊆ Rd. Assume that L : Θ → R is twice continuously

differentiable and that pθ(x) is twice continuously differentiable in θ for every fixed x in its
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domain. If θ ∈ Θ is in the convex hull of Θε ∩B(θ, δ), then

R(n)
Θε,L(P ) ≤ D(P‖Pθ) +

L(θ)

n
+
δ2

2
sup

θ̃∈B(θ,δ)

λ1(IP (θ̃) + 1
n∇∇

′L(θ̃))+.

Proof. Define fX(θ) := log p(X)
pθ(X) + L(θ)

n , and let X ∼ P . We use a second-order Taylor

expansion at θ with Lagrange remainder and reason similarly to the proofs of Lemmas 2.3.1

and 2.3.2.

R(n)
Θε,L(P ) = inf

θε∈Θε
EfX(θε)

= inf
θε∈Θε

E
(
fX(θ) + (θε − θ)′∇fX(θ) + 1

2(θε − θ)′[∇∇′fX(θ̃)](θε − θ)
)

= inf
θε∈Θε

(
EfX(θ) + (θε − θ)′E∇fX(θ) + 1

2(θε − θ)′[E∇∇′fX(θ̃)](θε − θ)
)

for some θ̃ between θ and θε.

The infimum is bounded by the expectation for any random θε on the grid-points. In

particular, use the distribution on neighboring grid-points that makes θε have expectation

θ. The first-order term is eliminated, while the second-order term is bounded by half the

expected squared length of the vector θε − θ times the largest eigenvalue (if positive).

When Θε ⊆ Θ is an ε-discretization, we use ε
√
d as δ.

Corollary 2.3.4. Let Θ ⊆ Rd be a convex parameter space having densities twice continu-

ously differentiable in θ. Let Θε ⊆ Θ be an ε-discretization. For any θ in the convex hull of

Θε,

R(n)
Θε,L(P ) ≤ D(P‖Pθ) +

L(θ)

n
+
ε2d

2
sup

θ̃∈B(θ,ε
√
d)

λ1(IP (θ̃) + 1
n∇∇

′L(θ̃))+.

If one uses discretization ε = a/
√
n,

R(n)
Θε,L(P ) ≤ D(P‖Pθ) +

L(θ) + a2dz/2

n

with z := supθ̃∈B(θ,
√
ad) λ1(IP (θ̃) + ∇∇′L(θ̃))+ which does not depend on n. Notice that

this bound uses the n = 1 version of the supremum term, because they cannot increase with
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n. Notice also that, in general, z will increase with d. One could set a2 = 1/d to cancel

out all dimension dependence, but that has an undesirable overall effect on the risk bound

results put forward in this paper.

One will most likely want to invoke these results with Pθ being the rI-projection of P

onto Θ if it exists. In particular, if P is in the model, then we can let Pθ be P to get an

exact bound of order 1/n for R(n)
Θε,L(P ).

Bounding summations over grid-points

Lemmas 2.3.5 and 2.3.6 provide bounds for summations of Gaussian-shaped functions over

ε-discretizations of Rd.

Lemma 2.3.5. Let Θε be an ε-discretization of Rd. Then for any c > 0 and v ∈ Θε,

∑
θ∈Θε

e−c‖θ−v‖
2 ≤

(
1 +

√
π

ε
√
c

)d

Proof. We can assume without loss of generality that v is the zero vector and that Θε

includes zero. First, consider the one-dimensional problem. The “center” term equals 1

and the sum of the other terms is bounded by a Gaussian integral.

∑
θ∈Θε

e−cθ
2

=
∑
θ∈Θε

e−cε
2(θ/ε)2

=
∑
z∈Z

e−cε
2z2

≤ 1 +

∫
R
e−cε

2z2
dz

= 1 +

√
π

ε
√
c

The d-dimensional problem can be bounded in terms of d instances of the one-dimensional

problem. Let Θ
(1)
ε , . . . ,Θ

(d)
ε represent the underlying discretizations of R, so that Θε =
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∏
j Θ

(j)
ε .

∑
θ∈Θε

e−c‖θ‖
2

=
∑
θ∈Θε

e−c
∑
j θ

2
j

=
∑

θ1∈Θ
(1)
ε

. . .
∑

θd∈Θ
(d)
ε

∏
j

e−cθ
2
j

=
∏
j

∑
θj∈Θ

(j)
ε

e−cθ
2
j

≤
∏
j

(
1 +

√
π

ε
√
c

)
=
(

1 +
√
π

ε
√
c

)d

Similar reasoning provides a slightly larger bound if the peak of the Gaussian function

is not necessarily in the discretization.

Lemma 2.3.6. Let Θε be an ε-discretization of Rd. Then for any c > 0 and v ∈ Rd,

∑
θ∈Θε

e−c‖θ−v‖
2 ≤

(
1 + 2

√
π

ε
√
c

)d

Proof. Again, we begin with the one-dimensional problem. The closest point to v con-

tributes at most 1 to the sum. We reduce to Lemma 2.3.5 by comparison to Θ∗ε/2, the

(ε/2)-grid that includes v. Each point on the original grid can be translated “inward” to a

neighboring point on the new (more refined) grid. The sum over the new grid’s points will

be larger than the sum over the original grid’s points.

∑
θ∈Θε

e−c(θ−v)2 ≤
∑

θ∈Θ∗
ε/2

e−c(θ−v)2

≤ 1 +

√
π

(ε/2)
√
c
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As before, the d-dimensional problem reduces to the one-dimensional problem.

∑
θ∈Θε

e−c‖θ−v‖
2

=
∏
j

∑
θj∈Θ

(j)
ε

e−c(θj−vj)
2

≤
∏
j

(
1 + 2

√
π

ε
√
c

)
=
(

1 + 2
√
π

ε
√
c

)d

Miscellaneous facts

The following handy facts are known, but we provide brief proofs here nonetheless.

Lemma 2.3.7. For any vectors u, v in a real inner product space,

‖u− v‖2 ≤ 2‖u‖2 + 2‖v‖2.

Proof. We apply the Cauchy-Schwarz inequality followed by the arithmetic-geometric mean

inequality.

‖a− b‖2 = ‖a‖2 + ‖b‖2 − 2〈a, b〉

≤ ‖a‖2 + ‖b‖2 + 2‖a‖‖b‖

≤ ‖a‖2 + ‖b‖2 + 2(‖a‖2/2 + ‖b‖2/2)

Lemma 2.3.8. For vectors a and b in an inner product space,

‖a− b‖2 ≥ ‖a‖2 − 2‖a‖2‖b‖2 − ‖b‖2 − 2‖b‖4 − 1
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Proof. We use the Peter-Paul inequality with parameter b2, then Lemma 2.3.7.

‖a‖2 = ‖a− b+ b‖2

≤ ‖a− b‖2 + 2‖a− b‖‖b‖+ ‖b‖2

≤ ‖a− b‖2 + [‖b‖2‖a− b‖2 + 1] + ‖b‖2

≤ ‖a− b‖2 + ‖b‖2(2‖a‖2 + 2‖b‖2) + 1 + ‖b‖2

Lemma 2.3.9. Let v ∈ Rd, and let M be a symmetric d× d matrix. Then

λd(M) ≤ v′Mv

‖v‖2
≤ λ1(M).

Proof. Any symmetric matrix has an orthonormal eigenvector decomposition M = QΛQ′.

v′Mv = v′QΛQ′v

=
∑
j

λj(Q
′v)2

j

= ‖v‖2
∑
j

λj

(
Q′

v

‖v‖

)2

j

.

Realize that squared values in the summation are eigenvector-basis coordinates of the unit

vector in the direction of v. As such, these squared coordinates must sum to 1. Thus the

summation is a weighted average of the eigenvalues. It achieves its maximum λ1 when v

is in the direction of the first eigenvector, and it achieves its minimum λd when v is in the

direction of the last eigenvector.

Proof of Theorem 2.2.1. Compared to Theorem 2.1.1, this proof only requires adding and

subtracting a discrepancy term. Define

gX(θ) :=

√
pθ(X)/p(X)e−

1
2 [L(θ)+L(θ)]

A(P, Pθ)
.
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Let θε be any point in Θε; it is allowed to depend on X.

DB(P, Pθ̂) := 2 log
1

A(P, Pθ̂)

= 2 log gX(θ̂) + log
p(X)

pθ̂(X)
+ L(θ̂) + L(θ̂)

= 2 log gX(θε) + log
p(X)

pθ̂(X)
+ L(θ̂) + L(θ̂) + 2 log

g(θ̂)

g(θε)

≤ 2 log
∑
θ∈Θε

gX(θ) + log
p(X)

pθ̂(X)
+ L(θ̂) + L(θ̂) + 2 log

gX(θ̂)

gX(θε)
(2.4)

The inequality holds for every θε ∈ Θε, so it also holds for the (random) infimum.

The proof is completed by taking the expectation of (2.4) and proceeding analogously

to Theorem 2.1.1.

Proof of Lemma 2.2.4. First, e−ψ(θ)/2 cancels out of the numerator and denominator.

What is left over in the log-likelihood is linear in θ, so it’s Hessian is the zero matrix. Thus

all we have left is

∇∇′ log Ãθ

where Ãθ is short-hand for the [multiple] integral

∫
X

√
p(x)r(x)e

1
2 θ
′φ(x)dx

and r is the exponential family’s “carrier” function. By inspecting the form of Ãθ, we see

that it is the partition function of a different exponential family with natural parameter θ,

sufficient statistic φ/2, and carrier
√
pr. This family’s natural parameter space is at least

as large as that of the original exponential family in question, because by Cauchy-Schwarz,

∫
X

√
p(x)r(x)e

1
2 θ
′φ(x)dx ≤

√∫
X
p(x)dx

√∫
X
r(x)eθ′φ(x)dx

=

√∫
X
r(x)eθ′φ(x)dx.
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This quantity is finite on the natural parameter space of the original exponential family.

Therefore, all derivatives of Ãθ with respect to θ can be taken through the integral [Lehmann

and Romano, 2006, Theorem 2.7.1].

The Hessian of log Ãθ can be expressed as

∇∇′ log Ãθ =
1

Ã2
θ

[
Ãθ(∇∇′Ãθ)− (∇Ãθ)(∇Ãθ)′

]
. (2.5)

Using the derivative-integral interchange, we find the gradient of Ãθ to be

∇Ãθ = ∇
∫
X

√
p(x)r(x)e

1
2 θ
′φ(x)dx

= 1
2

∫
X
φ(x)

√
p(x)r(x)e

1
2 θ
′φ(x)dx

= 1
2ÃθEφ(Y )

where the distribution of Y is the 1
2 -log-mixture between P and Pθ.

Likewise, the Hessian is

∇∇′Ãθ = 1
4

∫
X
φ(x)φ(x)′

√
p(x)r(x)e

1
2 θ
′φ(x)dx

= 1
4ÃθEφ(Y )φ(Y )′.

Referring back to (2.5), we conclude that the Hessian of log Ãθ is

∇∇′ log Ãθ = 1
4 [Eφ(Y )φ(Y )′ − (Eφ(Y ))(Eφ(Y ))′]

= 1
4Cφ(Y ).

Lemma 2.3.10 formalizes a self-evident observation about reweighting a density toward a

point. The stochastic inequality implies an inequality for the expectations, which is used for

Theorem 4.0.1. It also implies a stochastic inequality (and therefore expectation inequality)

for the squared norms, which is used for an example in Section 2.2.
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Lemma 2.3.10. Suppose g : Rd → R is a unimodal measurable function that is spherically

symmetric about its peak at µ. Let U be a random vector with Lebesgue density q, and let

W be a random vector with density proportional to the product qg. Then

‖W − µ‖
st
≤ ‖U − µ‖.

Proof. Define Bε to be the closed ball of radius ε centered at µ, and define gε to be the value

of g on the boundary of Bε. Consider the ratio P(W ∈ Bε)/P(W 6∈ Bε); the normalizing

constant
∫
qg dγ cancels out. Then because of the assumed shape of g, the numerator

integrand is lower bounded by qgε, while the denominator integrand is upper bounded by

qgε. Canceling the common gε gives

P(W ∈ Bε)
P(W 6∈ Bε)

≥ P(U ∈ Bε)
P(U 6∈ Bε)

Because x
1−x is a monotonic transformation, we have P(W ∈ Bε) ≥ P(U ∈ Bε), true for any

ε, which implies the desired stochastic inequality.

Proof of Lemma 2.2.5. EY is the minimizer of expected squared distance from Y , so

E
Xniid∼P

Vφ(Y ) = 1
σ2E‖Y − EY ‖2

≤ 1
σ2E‖Y − σθ‖2

Now, realize that σθ is the location of the peak of the density pθ. Likewise, the square root

√
pθ also has its mode at σθ and is spherically symmetric about that point. The density

of Y is proportional to the product of
√
p and

√
pθ. Making use of Lemma 2.3.10, we see

that this multiplication results in a density that is more concentrated toward σθ compared
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to
√
p. Letting X̃ have density proportional to

√
p,

E‖Y − σθ‖2 ≤ E‖X̃ − σθ‖2

= VX̃ + ‖EX̃ − σθ‖2

≤ VX̃ + [‖EX̃ − σθ̂‖+ ‖σθ̂ − σθ‖]2

≤ VX̃ + 2‖EX̃ − σθ̂‖2 + 2σ2‖θ̂ − θ‖2

≤ VX̃ + 2‖EX̃ − σθ̂‖2 + 2σ2δ2.

To get the overall result, we need to take an expectation of this with respect to the data;

the random quantity is θ̂ ≡ X̄n/σ. By the bias-variance decomposition,

E‖EX̃ − σθ̂‖2 = E‖EX̃ − X̄n‖2

= VX̄n + ‖EX̃ − EX̄n‖2

= 1
nVX + ‖EX̃ − EX‖2

Here we prove the claim that simple distribution-free risk bounds for the Gaussian

location MLE are easy to obtain.

Theorem 2.3.11. Assume Xn iid∼ P . Then the estimator Pθ̂ := N(X̄n, σ
2I) has the Bhat-

tacharyya risk bound

EDB(P, Pθ̂) ≤ DB(P, Pθ∗) +
VX/2σ2

n

where X ∼ P and Pθ∗ is N(EX,σ2Id).

Proof. If P has an infinite second moment, then the inequality is trivially true. We proceed

assuming the second moment is finite.

Let P̃ denote the part of P that is absolutely continuous with respect to Lebesgue

measure, and realize that the rest of P contributes nothing to its Hellinger affinity with

another continuous distribution. The only inequality in our derivation comes from applying
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Theorem B.0.3 (incorporating
√
p̃ into the measure).

EDB(P, Pθ̂) = E− 2 log

∫
Rd

√
p̃ (2πσ2)−d/4e−

1
4σ2 ‖y−θ̂‖2dy

≤ −2 log

∫
Rd

√
p̃ (2πσ2)−d/4e−

1
4σ2 E‖y−θ̂‖2dy

= −2 log

∫
Rd

√
p̃ (2πσ2)−d/4e−

1
4σ2 (‖y−EX‖2+E‖X̄n−EX‖2)dy

= −2 log

∫
Rd

√
p̃ (2πσ2)−d/4e−

1
4σ2 ‖y−EX‖2dy +

1

2σ2
E‖X̄n − EX‖2

= DB(P, Pθ∗) +
VX/2σ2

n

An analogous result for Kullback risk holds as an identity.

Theorem 2.3.12. Assume Xn iid∼ P . Then the estimator Pθ̂ := N(X̄n, σ
2I) has Kullback

risk

ED(P‖Pθ̂) = D(P‖Pθ∗) +
VX/2σ2

n

where X ∼ P and Pθ∗ is N(EX,σ2Id).

Proof. Pθ∗ is the rI-projection of P onto the log-convex set Θ, so we have the “Pythagorean”

identity

D(P‖Pθ) = D(P‖Pθ∗) +D(Pθ∗‖Pθ)

for any Pθ in the model. The identity holds for the random Pθ̂ as well. In that case, the

first term does not depend on the data. By the definition of relative entropy and Gaussian

density, the expectation of the second term is

E
Xniid∼P

D(Pθ∗‖Pθ̂) = E
Xniid∼P

1

2σ2
EX∼P

[
‖X − θ̂‖2 − ‖X − θ∗‖2

]
=

1

2σ2
E
Xniid∼P

‖θ̂ − θ∗‖2.

The Gaussian location MLE is θ̂ := X̄n, so E
Xniid∼P

‖θ̂ − θ∗‖2 = 1
nVX.
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Chapter 3

Approximation error of mixtures

In a groundbreaking paper, Jones [1992] proved that the integrated squared error between

a function in a Hilbert space and the best k-term linear combination greedily selected

from a spanning set decays with order 1/k as long as a certain L1-type norm is finite.

Implications for neural network approximation of sigmoidal functions were worked out in

detail by Barron [1993]; bounds for greedily estimating neural nets from data were given in

Barron [1994]. These developments were significant for two main reasons: they showed that

good approximation is possible without the number of nodes growing exponentially with

the dimension of the function’s domain, and they provided a more feasible optimization

algorithm (greedily, one node at a time) for defining the nodes.

Under the advisement of Andrew Barron, Jonathan Li established analogous 1/k rates

of approximation error and risk bounds for greedy k-component mixture density estimation.

Their work is detailed in Li’s doctoral thesis (Li [1999]) and summarized by Li and Barron.

However, their inequality requires the family to have a uniformly bounded density ratio. As

a result, it does not apply to familiar families, including GRBM models. In such cases, Li

and Barron advocate truncating the distributions and restricting the parameter space to a

compact subset of Rd. We will prove that 1/k rates can hold without a uniformly bounded

density ratio; in particular, we prove such a result for expected redundancy rate of GRBMs.

Suppose Φ := {φµ : µ ∈ Γ} is a family of probability densities on a measurable space

X with respect to a σ-finite dominating measure. Let Q be a probability measure on Γ

40



whose domain σ-algebra is fine enough that (µ, x) 7→ φµ(x) is product-measurable.1 Let φ̄Q

denote the integral transform of Q defined by

φ̄Q(x) :=

∫
Γ
φµ(x)dQ(µ)

= Eµ∼Qφµ(x).

Tonelli’s Theorem allows us to conclude that φ̄Q is measurable, and, by interchanging

integrals, that φ̄Q must be a probability density as well. The corresponding probability

measure on X is denoted Φ̄Q and is called the Q mixture (over Φ).

We let C(Φ) denote set of all such integral transforms of probability measures (each

defined on a sufficiently fine σ-algebra of Γ); this set is convex. Notice that C(Φ) includes

all discrete mixtures from Φ. Importantly, C(Φ) also includes all of the other well-defined

“mixtures” such as continuous mixtures, as allowed by the nature of Γ.

Given any “target” probability measure P on X , the greedy algorithm of Barron and

Li constructs a sequence of approximating mixtures

p
θ
(P )
k+1

= (1− αk+1)p
θ
(P )
k

+ αk+1φµ(P )
k+1

.

The mixture components θ
(P )
k = {µ(P )

1 , . . . , µ
(P )
k } are greedily chosen according to

µ
(P )
1 := argmax

µ∈Γ
EX∼P log φµ(X), followed by

µ
(P )
j+1 := argmax

µ∈Γ
EX∼P log[(1− αj+1)p

θ
(P )
j

(X) + αj+1φµ(X)].

We will assume throughout this paper that a maximizer exists at each step; it need not be

unique.

We will use the term “Barron’s weights” to refer to the sequence αj = 2/(j+1). Barron

and Li suggest using either these weights or finding the optimal weights at each step.2 After

1. By the theory of Carathéodory functions, if X is a separable metrizable space and each density φµ :
X → R+ is continuous, then product-measurability is guaranteed as long as the domain σ-algebra is fine
enough that µ 7→ φµ(x) is measurable for every x ∈ X — see [Aliprantis and Border, 2006, Lem 4.51].

2. Technically, Li presented the slightly different sequence α2 = 2/3 and αj = 2/j thereafter. The sequence
2/(j + 1) also works and is a bit simpler.
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k steps, the weight of component j ∈ {1, . . . , k} is αj
∏k
i=j+1(1−αi); with Barron’s weights,

this simplifies to 2j
k(k+1) . We will provide results for this choice of weights and also for the

choice αj = 1/j which results in an equal-weighted mixture.

Theorem 3.0.1 is a variant on Li’s Lemma 5.9 that will make it possible for us to avoid

requiring a lower bound on the densities being mixed. For any A ⊆ Γ and probability

measure Q on Γ, we define

b
(A)
Q (P ) := EX∼P

[(
1 + sup

µ∗∈A
log

supµ∈Γ φµ(X)

φµ∗(X)

)
Eµ∼Qφ2

µ(X)

[φ̄Q(X)]2

]
.

In particular, the quantities of current interest to us will have the greedy selections θ
(P )
k as

the set A. We use b
(k)
Q (P ) as shorthand for b

(θPk )

Q (P ).

Theorem 3.0.1. Let Φ := {φµ : µ ∈ Γ} be a family of probability densities with respect to

a σ-finite dominating measure, and let Q be a probability measure on Γ for which (µ, x) 7→

φµ(x) is product-measurable. Let P
θ
(P )
1

, P
θ
(P )
2

, . . . be the sequence of mixtures from Φ that

greedily maximize EX∼P log pθ1(X), EX∼P log pθ2(X), . . . . If either Barron’s weights or

optimal weights were used, then

EX∼P log
φ̄Q(X)

p
θ
(P )
k

(X)
≤
b
(k)
Q (P )

k
.

Alternatively, if equal weights were used, then

EX∼P log
φ̄Q(X)

p
θ
(P )
k

(X)
≤

(1 + log k) b
(k)
Q (P )

k
.

After stating some of the interesting consequences this theorem, we will explore ways of

bounding b
(k)
Q (P ) in specific contexts.

Corollary 3.0.2 uses Theorem 3.0.1 to bound the approximation error of greedy k-

component mixtures in terms of any specific mixture over the family.

Corollary 3.0.2. Let Φ := {φµ : µ ∈ Γ} be a family of probability densities with respect to

a σ-finite dominating measure, and let Q be a probability measure on Γ for which (µ, x) 7→

φµ(x) is product-measurable. Let P
θ
(P )
1

, P
θ
(P )
2

, . . . be the sequence of mixtures from Φ that
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greedily maximize EX∼P log pθ1(X), EX∼P log pθ2(X), . . . . If either Barron’s weights or

optimal weights were used, then

D(P‖P
θ
(P )
k

) ≤ D(P‖Φ̄Q) +
b
(k)
Q (P )

k
.

Alternatively, if equal weights were used, then

D(P‖P
θ
(P )
k

) ≤ D(P‖Φ̄Q) +
(1 + log k) b

(k)
Q (P )

k
.

The above result holds for any legitimate mixing distribution Q, so it holds for the

infimum:

D(P‖P
θ
(P )
k

) ≤ inf
Q
{D(P‖Φ̄Q) +

b
(k)
Q (P )

k
}.

We will focus on conclusions for which the first term achieves its infimum so that our

approximation error bound explicitly exhibits the divergence from the target to the set of

all mixtures. To that end, we define3

b
(k)
Φ (P ) := lim

ε→0
inf
{
b
(k)
Q (P ) : Q s.t. D(P‖Φ̄Q) ≤ D(P‖C(Φ)) + ε

}
.

This quantity can also be thought of as the smallest possible limit of b
(k)
Qn

(P ) among the

sequences (Qn) for which D(P‖Φ̄Qn) approaches the infimum relative entropy D(P‖C(Φ)).

Corollary 3.0.3. Let Φ := {φµ : µ ∈ Γ} be a family of probability densities with respect

to a σ-finite dominating measure. Let P
θ
(P )
1

, P
θ
(P )
2

, . . . be the sequence of mixtures from Φ

that greedily maximize EX∼P log pθ1(X), EX∼P log pθ2(X), . . . . If either Barron’s weights

or optimal weights were used, then

D(P‖P
θ
(P )
k

) ≤ D(P‖C(Φ)) +
b
(k)
Φ (P )

k
.

3. This definition and other similar ones to come are analogous to that of [Li, 1999, Cor 3.3.1].
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Alternatively, if equal weights were used, then

D(P‖P
θ
(P )
k

) ≤ D(P‖C(Φ)) +
(1 + log k) b

(k)
Φ (P )

k
.

The MDL method for bounding risk penalized likelihood estimation (which was the

topic of Chapter 2) is neatly stated in terms of the model’s relative entropy approximation

error. In truth, the method works for more general estimators and only needs a bound

on the expected coding redundancy, which Corollary 3.0.4 bounds using Theorem 3.0.1.

Throughout the remainder of this section, let Pn denote the random empirical distribution

of Xn iid∼ P ; the notation θ̂j := θ
(Pn)
j comes naturally.

Corollary 3.0.4. Let Φ := {φµ : µ ∈ Γ} be a family of probability densities with respect to

a σ-finite dominating measure, and let Q be a probability measure on Γ for which (µ, x) 7→

φµ(x) is product-measurable. Let Pθ̂1 , Pθ̂2 , . . . be the sequence of mixtures from Φ that greedily

maximize the iid likelihood. If either Barron’s weights or optimal weights were used, then

E
Xniid∼P

1

n

∑
i

log
p(Xi)

pθ̂k(Xi)
≤ D(P‖Φ̄Q) +

E b(k)
Q (Pn)

k

and

E
Xniid∼P

1

n

∑
i

log
p(Xi)

pθ̂k(Xi)
≤ D(P‖C(Φ)) +

E b(k)
Φ (Pn)

k
.

Alternatively, if equal weights were used, then

E
Xniid∼P

1

n

∑
i

log
p(Xi)

pθ̂k(Xi)
≤ D(P‖Φ̄Q) +

(1 + log k)E b(k)
Q (Pn)

k

and

E
Xniid∼P

1

n

∑
i

log
p(Xi)

pθ̂k(Xi)
≤ D(P‖C(Φ)) +

(1 + log k)E b(k)
Φ (Pn)

k
.

Note that the expected redundancy bounds of Corollary 3.0.4 hold for the true maximum

likelihood estimator as well, since it produces larger log likelihood values than the greedy
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algorithm does.

The above corollaries become useful once a bound for b
(k)
Q (P ) has been established.

Theorem 3.0.5 does so by generalizing Li’s approach. First, we define the point-wise density

ratio supremum sΦ(x) := supµ1,µ2∈Γ
φµ1 (x)

φµ2 (x) .

Theorem 3.0.5. Let Φ := {φµ : µ ∈ Γ} be a family of probability densities, and let Q be a

probability measure on Γ. Then both b
(k)
Q (P ) and Eb(k)

Q (Pn) are bounded by

EX∼P

[
(1 + log sΦ(X))

Eµ∼Qφ2
µ(X)

φ̄2
Q(X)

]
.

A uniform bound on the density ratio provides a constant bound on sΦ. In that case,

(1 + log sup sΦ) c2
Q(P ) works as a bound, where

c2
Q(P ) := EX∼P

Eµ∼Qφ2
µ(X)

φ̄2
Q(X)

;

likewise (1 + log sup sΦ) c2
Φ(P ) works in the infimum version of the bound, where

c2
Φ(P ) := lim

ε→0
inf
{
c2
Q(P ) : Q s.t. D(P‖Q) ≤ D(P‖C(Φ)) + ε

}
.

These are essentially the bounds given in Li [1999]. Section 3.2 of that dissertation discusses

c2
Q(P ), pointing out that it is 1 plus an expected coefficient of variation; his Lemma 3.1

shows that c2
Q(Φ̄Q) is bounded by the number of components of Φ̄Q if it is a discrete mixture

from the model.

Li’s results rely on a uniform bound for the density ratio, whereas Theorem 3.0.5 allows

the density ratio to be bounded as a function of x and incorporates this function into a

complexity constant for P .

For GRBMs with component means in an unbounded Γ ⊆ Rd there is no uniform bound,

but in that case

log sΦ(x) =
1

2σ2
sup
µ∈Γ
‖x− µ‖2

≤
‖x− EX‖2 + supµ∈Γ ‖µ− EX‖2

σ2
.
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This leads us to define a weighted version of c2
Q(P ) that arises in the GRBM bounds.

C2
Q(P ) := EX∼P

‖X − EX‖2

σ2

Eµ∼Qφ2
µ(X)

φ̄2
Q(X)

By comparison to the proof of [Li, 1999, Lem 3.1], it is easily seen that if Φ̄Q is a discrete

mixture of components φ1, . . . , φk, then

C2
Q(Φ̄Q) ≤ 1

σ2

k∑
j=1

EXj∼φj‖Xj − EX∼Φ̄Q
X‖2.

When the parameter space is bounded, Corollary 3.0.6 states a bound that follows from

Theorem 3.0.5.

Corollary 3.0.6. Let Φ := {N(µ, σ2Id) : µ ∈ Γ ⊆ B(a, r)}, and let Q be a probability

measure on Γ with domain at least as fine as the Borel σ-field. Then both b
(k)
Q (P ) and

E b(k)
Q (Pn) are bounded by

(1 + 2r2+2‖a−EX‖2
σ2 ) c2

Q(P ) + 2C2
Q(P )

where X ∼ P . Additionally, both b
(k)
Φ (P ) and E b(k)

Φ (Pn) are bounded by

lim
ε→0

inf
{

[(1 + 2r2+2‖a−EX‖2
σ2 )c2

Q(P ) + 2C2
Q(P )] : Q s.t. D(P‖Φ̄Q) ≤ D(P‖C(Φ)) + ε

}
.

In conjunction with the previous corollaries, Corollary 3.0.6 enables us to bound the ap-

proximation error and expected redundancy of GRBMs with constrained component means.

Without constraining the parameter space, we can still bound the expected redundancy

of GRBM maximum likelihood estimation by using Corollary 3.0.4 with Theorem 3.0.7

which uses the fact for the GRBM model all selected component means must be in the

convex hull of the data points. The bound involves the  Lp-norm ‖Y ‖p := (E‖Y ‖p)1/p.

Theorem 3.0.7. Let Φ := {N(µ, σ2Id) : µ ∈ Rd}, and let Q be a probability measure on Rd

with domain at least as fine as the Borel σ-field. Then for any z ≥ 1, E b(k)
Q (Pn) is bounded
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by

n1/z
[
(1 +

‖X−EX‖22z
σ2 ) c2

Q(P ) + 2C2
Q(P )

]
,

and E b(k)
Φ (Pn) is bounded by

n1/z lim
ε→0

inf
{

[(1 +
‖X−EX‖22z

σ2 )c2
Q(P ) + 2C2

Q(P )] : Q s.t. D(P‖Φ̄Q) ≤ D(P‖C(Φ)) + ε
}
.

Furthermore, if P has the subgaussianity property that EX∼P et‖X−EX‖ ≤ eσ
2
P t

2/2 for all

t ≥ 0, then E b(k)
Q (Pn) is bounded by

(1 + log n)
[
(1 +

5σ2
P

σ2 ) c2
Q(P ) + 2C2

Q(P )
]
,

and E b(k)
Φ (Pn) is bounded by

(1 + log n) lim
ε→0

inf
{

[(1 +
5σ2
P

σ2 )c2
Q(P ) + 2C2

Q(P )] : Q s.t. D(P‖Φ̄Q) ≤ D(P‖C(Φ)) + ε
}
.

3.1 Proofs

First, we will establish an iteration lemma similar to [Li, 1999, Lem 5.6] that enables us

to deal with equal-weighted greedy mixtures.

Lemma 3.1.1. Let (Bk) be a non-negative and non-decreasing sequence of real numbers.

If (Dk) is a sequence such that

Dk+1 ≤ k
k+1Dk + 1

(k+1)2Bk+1.

then

Dk ≤
D1 +Bk log k

k
.

Proof. The inequality is trivial for k = 1. For k ≥ 2, the stated consequence follows from
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the fact that

Dk ≤
D1 +B

∑k
j=2 1/j

k
(3.1)

because the harmonic sum is bounded by the logarithm. We prove (3.1) by induction,

assuming Bk = B is fixed for all k. For k = 2,

D2 ≤
D1 +B/2

2

as required. Next, assuming (3.1) holds for Dk,

Dk+1 ≤ k
k+1Dk + 1

(k+1)2B

≤
D1 +B

∑k
j=2 1/j

k + 1
+
B/(k + 1)

k + 1

=
D1 +B

∑k+1
j=2 1/j

k + 1
.

Now suppose rather than a fixed B, we have non-decreasing (Bk). To get the desired

result for any particular k, simply invoke the fixed version with B = Bk which is at least

as large as the sequence’s previous terms.

A crucial function in Li [1999] is

ζ(z) :=
z − 1− log z

(z − 1)2
.

Li’s Lemma 5.4 provides a convenient bound; the following lemma is a slight variant on

that bound.

Lemma 3.1.2. For any t ≥ 0,

ζ( t3) ≤ 1 + log(1
t ∨ 1).

Proof. It is easy to verify that if t ≥ 1, then ζ( t3) is less than 1, which is the value on the

right side.
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Next, we derive a rough bound that will provide the desired result for small values of t.

Assuming z ≤ 1,

ζ(z) :=
z − 1− log z

(z − 1)2

= log 1
z +

z − 1− (2z − z2) log z

(z − 1)2

≤ log 1
z +

z − 1− 2z log z

(z − 1)2

Assuming further that z = .1, the numerator of the second term is no greater than .1 −

1 + .2 log 10 ≈ −.44; the denominator inflates the term, making it more negative. For any

z ≤ .1, the second term’s numerator will be less than that of the z = .1 case (because z log z

is monotonic on [0, .1]). Thus for z ≤ .1, the second term is bounded by 1 − log 3 ≈ −.10.

This verifies that the proposed inequality works for t ≤ .3.

For the intermediate region t ∈ (.3, 1), draw a plot to see that ζ( t3) is less than 1 −

log t.

Proof of Theorem 3.0.1. First, follow the proof of [Li, 1999, Lem 5.8] except use our

Lemma 3.1.2 to bound ζ((1 − α)
p
θ
(P )
k−1

φ̄Q
), which differs only slightly from Li’s Lemma 5.4.

Since ζ is decreasing ([Li, 1999, Lem 5.3]), the bound for α = 2/3 also works for any smaller

value of α.

ζ

(
(1− α)

p
θ
(P )
k−1

φ̄Q

)
≤ ζ

(
p
θ
(P )
k−1

3φ̄Q

)

≤ 1 + log
φ̄Q ∨ pθ(P )

k−1

p
θ
(P )
k−1

= 1 + log
φ̄Q ∨

∑
j λjφµ(P )

j∑
j λjφµ(P )

j

≤ 1 + log

∑
j λj(φ̄Q ∨ φµ(P )

j

)∑
j λjφµ(P )

j

≤ 1 + max
j∈{1,...,k−1}

log
φ̄Q ∨ φµ(P )

j

φ
µ

(P )
j
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by the log-sum inequality. The numerator is bounded by sup(µ,x) φµ(x).

Combine this with the proof of [Li, 1999, Lem 5.9] to see the iterative inequality

EX∼P log
φQ(X)

p
θ
(P )
k+1

(X)
≤ (1− α)EX∼P log

φQ(X)

p
θ
(P )
k

(X)
+ α2b

(k)
Q (P ).

The initial term is

EX∼P log
φQ(X)

p
θ
(P )
1

(X)
= EX∼P log

φQ(X)

φ
µ

(P )
1

(X)

≤ EX∼P

(
1 + log

φQ(X)

φ
µ

(P )
1

(X)

)

≤ EX∼P

[(
1 + log

φQ(X)

φ
µ

(P )
1

(X)

)
Eµ∼Qφ2

µ(X)

φ̄2
Q(X)

]

= b
(1)
Q (P )

because
Eµ∼Qφ2

µ

φ̄2
Q
≥ 1 point-wise.

b
(k)
Q (P ) is a non-negative and non-decreasing sequence as k increases. If Barron’s weights

are used then [Li, 1999, Lem 5.6] applies. If optimal weights are used at any step, then

it results in a smaller expected log likelihood ratio than the Barron weight does, so the

inequality still holds.

The result for equal weights follows from Lemma 3.1.1 using the fact that the initial

term is bounded by b
(1)
Q (P ) which is in turn bounded by b

(k)
Q (P ).

Proof of Theorem 3.0.5. For b
(k)
Q (P ), the result is immediate from the definitions. For

the expected empirical version of the inequality,

Eb(k)
Q (Pn) := E

Xniid∼P
1
n

∑
i

[(
1 + max

µ̂∈θ̂k
log

supµ φµ(Xi)

φµ̂(Xi)

)
Eµ∼Qφ2

µ(Xi)

φ̄2
Q(Xi)

]

≤ E
Xniid∼P

1
n

∑
i

[
(1 + log sΦ(Xi))

Eµ∼Qφ2
µ(Xi)

φ̄2
Q(Xi)

]

= 1
n

∑
i

EXi∼P

[
(1 + log sΦ(Xi))

Eµ∼Qφ2
µ(Xi)

φ̄2
Q(Xi)

]
.
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Lemma 3.1.3. Let X,X1, . . . , Xn
iid∼ P . For any non-negative functions g and h,

E
1

n

∑
i

[
g(Xi) max

j
h(Xj)

]
≤ Eg(X)h(X) + [Eg(X)]Emax

i
h(Xi).

Proof.

E
1

n

∑
i

g(Xi) max
j
h(Xj) ≤ E

1

n

∑
i

g(Xi)[h(Xi) + max
j 6=i

h(Xj)]

= E
1

n

[∑
i

g(Xi)h(Xi) +
∑
i

g(Xi) max
j 6=i

h(Xj)

]

= E g(X)h(X) + [Eg(X1)][E max
i≤n−1

h(Xi)]

Proof of Theorem 3.0.7. For the GRBM model,

b
(k)
Q (P ) := EX∼P

[(
1 + max

µ̂∈θ̂k
log

supµ φµ(X)

φµ̂(X)

)
Eµ∼Qφ2

µ(X)

[φ̄Q(X)]2

]

= EX∼P

[(
1 + max

µ̂∈θ̂k

‖X − µ̂‖2

2σ2

)
Eµ∼Qφ2

µ(X)

[φ̄Q(X)]2

]

≤ EX∼P

[(
1 +
‖X − EX‖2

σ2
+ max

µ̂∈θ̂k

‖µ̂− EX‖2

σ2

)
Eµ∼Qφ2

µ(X)

[φ̄Q(X)]2

]
.

Therefore, with X,X1, . . . , Xn
iid∼ P ,

Eb(k)
Q (Pn) ≤ E

Xniid∼P
1

n

∑
i

[(
1 +
‖Xi − EX‖2

σ2
+ max

µ̂∈θ̂k

‖µ̂− EX‖2

σ2

)
Eµ∼Qφ2

µ(Xi)

[φ̄Q(Xi)]2

]
.

The likelihood maximizing (or greedily maximizing) component means must be in the

convex hull of the data points; otherwise, moving a proposed component mean toward its

projection onto the convex hull would increase the likelihood of every data point. Further-

more, the farthest point to any convex polytope always occurs at a corner point; every

51



corner point of the data’s convex hull is itself a data point. Thus,

max
µ̂∈θ̂k
‖µ̂− EX‖ ≤ max

j
‖Xj − EX‖.

By Lemma 3.1.3,

E b(k)
Q (Pn) ≤

(
1 +

Emaxi ‖Xi − EX‖2

σ2

)
c2
Q(P ) + 2C2

Q(P )

Lemmas 3.1.5 and 3.1.6 below complete the proof by bounding the expected maximum

squared deviation.

The following lemma provides a general pattern for bounding an expected sample max-

imum. We present it here along with a standard proof for the reader’s convenience.

Lemma 3.1.4. If X,X1, . . . , Xn
iid∼ P , then for any convex, increasing, non-negative func-

tion f ,

Emax
i
Xi ≤ f−1 (nEf(X)) .

Proof.

f(Emax
i
Xi) ≤ Ef(max

i
Xi)

= Emax
i
f(Xi)

≤ E
∑
i

f(Xi)

= nEf(X)

Lemma 3.1.5. Let X,X1, . . . , Xn
iid∼ P . For any z ≥ 1,

Emax
i
‖Xi − EX‖2 ≤ n1/z(E‖X − EX‖2z)1/z.

Proof. Use Lemma 3.1.4 with f(x) = xz.
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Lemma 3.1.6. Let X,X1, . . . , Xn
iid∼ P . If there exists σP > 0 such that Eet‖X−EX‖ ≤

eσ
2
P t

2/2 for all t ≥ 0, then

Emax
i
‖Xi − EX1‖2 ≤ 2(e+1)

e−1 σ2
P (1 + log n) < 5σ2

P (1 + log n).

Proof. Using Lemma 3.1.4 with f(x) = ex/2z,

E
Xniid∼P

max
i
‖Xi − EX‖2 ≤ 2z log

(
nEe‖Xi−EX‖

2/2z
)
.

Using the Taylor series representation and a common subgaussian moment bound (e.g.

[Rivasplata, 2012, Prop 3.2]),

Ee‖Xi−EX‖
2/2z = 1 +

∑
k≥1

E‖Xi − EX‖2k/(2z)k

k!

≤ 1 + 2
∑
k≥1

(σ2
P /z)

k

= 1 +
2

1− σ2/z

= e

when we use e+1
e−1 σ

2
P for z.
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Chapter 4

Risk of Gaussian radial basis

mixtures

Suppose Θ =
⋃
k≥1 Θ(k) is a model class and each Θ(k) is a model of countable cardinality.

Let us index the distributions in Θ by θ = (k, µ) with µ ∈ Θ(k). Assume the penalty and

pseudo-penalty have the form  L(θ) =  L0(k) +  Lk(µ) and L(θ) = L0(k) + Lk(µ). Then

Theorem 2.1.1 can be useful if the penalty plus pseudo-penalty on k is large enough to

counteract the within-model summations.

∑
θ∈Θ

e−
1
2 [ L(θ)+L(θ)] =

∑
k≥1

e−1
2 [ L0(k)+L0(k)]

∑
µ∈Θ(k)

e−
1
2 [ Lk(µ)+Lk(µ)]


One can use L0(k) = 0 to avoid having to worry about the behavior of k̂. Then bounds on∑

θ∈Θ(k) e−[ Lk(θ)+Lk(θ)] should be known so that one can devise a penalty on k that bounds

the weighted sum of these summations. In particular, one can set  L0(k) large enough that

log
∑
k≥1

e−1
2  L0(k)

∑
θ∈Θ(k)

e−
1
2 [ Lk(θ)+Lk(θ)]

 ≤ 0.

It remains to deal with ELk(θ̂), either by bounding it or by absorbing it into the risk as

in Corollary 2.1.5. Importantly, this approach makes it possible to bound the risk when

k is penalized and the parameter within the model is unpenalized, as is typical in model
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selection.

The same ideas can be used if the Θ(k) are continuous parameter spaces. One can

apply Theorem 2.2.1 by devising grids Θ
(k)
ε ⊆ Θ(k), and defining Θε :=

⋃
k≥1 Θ

(k)
ε . The

discrepancy term in that bound can have its supremum restricted to Θ
(k̂)
ε to cancel out

e−
1
2 [ L0(k̂)+L0(k̂)].

Using the new risk bound approach from Chapter 2 with an expected redundancy bound

derived in Chapter 3, we derive a risk bound for GRBM estimation.1 The greedy algorithm

along with the notations C, c2
Q, and C2

Q were defined in Chapter 3.

Theorem 4.0.1. Let Φ := {N(µ, σ2Id) : µ ∈ Rd} represent the Gaussian location family

with covariance σ2Id. Let θ̂ = (k̂, {µ̂1, . . . µ̂k}) index the equal-weighted GRBM that max-

imizes (or greedily maximizes) log-likelihood minus penalty  L(θ) = 3dk log 4nk. If there

exists σP > 0 for which EX∼P et‖X−EX‖ ≤ eσ
2
P t

2/2 for all t ≥ 0, then

EDB(P, Pθ̂) ≤ D(P‖C(Φ)) +
12d(1 + log n)2

√
n

[
η2

Φ(P ) + σ2
P + 1

σ2 + E‖X̃ − EX‖+ 1
]

where X̃ ∼ √p and

η2
Φ(P ) := lim

ε→0
inf{(1 +

σ2
P
σ2 )c2

Q(P ) + C2
Q(P ) : Q s.t. D(P‖Φ̄Q) ≤ D(P‖C(Φ)) + ε}.

Furthermore, DB(P, Pθ̂) minus

1

n

∑
i

log
p(Xi)

pθ̂(Xi)
+

3dk̂ log 4nk̂

n
+

3d√
n

[
max
i
‖Xi − EX‖2 + 1/σ2 + E‖X̃ − EX‖+ 1

]

is stochastically less than an exponential random variable with rate 2/n.

4.1 Proofs

Lemma 4.1.1. Let θ = (µ1, . . . , µk) with each µj ∈ Rd indexing a component mean of an

equal-weighted k-component GRBM Pθ. Let δ = (δ1, . . . , δk) where each δj ∈ Rd has norm

1. The proof of Theorem 4.0.1 shows that the constant factors and the dependence on dimension are better
than stated here. The inequality presented by the theorem was chosen for simplicity.
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bounded by a. Then

|DB(P, Pθ+δ)−DB(P, Pθ)| ≤ 2ka

[
a+ E‖X̃ − EX‖+ max

j
‖µj − EX‖

]

where X ∼ P and X̃ has density proportional to
√
p. Additionally, if each δj is random

with expectation zero, then

E log
1

pθ+δ(x)
− log

1

pθ(x)
≤ a2/2σ2.

Proof. The deviation is bounded by the supremum absolute value of the derivative along

the path from θ to θ+ δ. (Let p denote the part of the density of P that is continuous with

respect to Lebesgue measure.)

d

dt
DB(P, Pθ+tδ) =

d

dt
− 2 log

∫ √
p(x)(1/2πσ2)d/4

√
1
k

∑
j

e−‖x−(µj+tδj)‖2/2σ2
dx

= −2

∫ √
p(x)

∑
j e
−‖x−(µj+tδj)‖2/2σ2

δ′j(x− (µj + tδj))√∑
i e
−‖x−(µi+tδi)‖2/2σ2

∫ √
p(y)

√∑
i e
−‖y−(µi+tδi)‖2/2σ2dy

dx

Use Cauchy-Schwarz to bound its absolute value.

∣∣∣∣ ddtDB(P, Pθ+tδ)

∣∣∣∣ ≤ 2
∑
j

∫ √
p(x)e−‖x−(µj+tδj)‖2/2σ2‖δj‖‖x− (µj + tδj)‖√∑

i e
−‖x−(µi+tδi)‖2/2σ2

∫ √
p(y)

√∑
i e
−‖y−(µi+tδi)‖2/2σ2dy

dx

≤ 2

∫ ∑
j

√
p(x)e−‖x−(µj+tδj)‖2/2σ2‖δj‖‖x− (µj + tδj)‖√

e−‖x−(µj+tδj)‖2/2σ2 ∫ √
p(y)
√
e−‖y−(µj+tδj)‖2/2σ2

dy
dx

= 2
∑
j

∫ √
p(x)e−‖x−(µj+tδj)‖2/4σ2‖δj‖‖x− (µj + tδj)‖∫ √

p(y)e−‖y−(µj+tδj)‖2/4σ2
dy

dx

≤ 2
∑
j

‖δj‖EX̃∼√p‖X̃ − (µj + tδj)‖

≤ 2
∑
j

‖δj‖
[
E
X̃∼√p‖X̃ − EX‖+ ‖µj − EX‖+ ‖δj‖

]

by Lemma 2.3.10. (X̃ ∼ √p should be understood to mean the normalized version of
√
p.)
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For the second part, we use Corollary B.0.3, which is a form of Hölder’s inequality.

E− log pθ+δ(x) = E− log 1
k

∑
j

e−‖x−(µj+δj)‖2/2σ2

≤ − log 1
k

∑
j

e−E‖x−(µj+δj)‖2/2σ2

= − log 1
k

∑
j

e−(‖x−µj‖2+E‖δj‖2)/2σ2

≤ − log 1
k

∑
j

e−‖x−µj‖
2/2σ2

+ a2/2σ2

Proof of Theorem 4.0.1. Invoke Theorem 2.2.1 with pseudo-penalty

L(θ) =
√
n
k

∑
j

‖µj − EX‖2

≤
√
nmax

j
‖µj − EX‖2.

Because the [both greedy and true] likelihood-maximizing component means are in the

convex hull of the data, each ‖µj − EX‖ is bounded by maxi ‖Xi − EX‖. Lemma 3.1.6

implies

EL(θ̂)

n
≤

(1 + log n)5σ2
P√

n
.

The summation part of Theorem 2.2.1 can be handled by using integration grids Θ
(k)
ε ⊆

Θ(k) = Rdk, as described in Section 2.2.2

∑
k≥1

e−
1
2  L(k)

∑
θε∈Θ

(k)
ε

e−
√
n

2k ‖µj−EX‖
2

=
∑
k≥1

e−
1
2  L(k)

(√
2πk

εn1/4

)dk
. (4.1)

Any penalty of at least 2dk log(2
√

2πk/εn1/4) results in a summation no greater than 1.

The continuous optimization result is achieved by bounding the discrepancy from the

2. We will find that we want ε to depend on k; we will use increasingly refined discretizations for the more
complex models.
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grid within each model of the model class. Define θ̂k ∈ Rdk to index the MLE (or greedy

MLE) within Θ(k). As demonstrated in Section 2.2, we lower bound the infimum over the

grid by an expectation for random θ̂k + δ(k) using a distribution for δ(k) = (δ1, . . . , δk) on

neighboring grid-points that has mean θ̂k. The pseudo-penalty’s contribution to expected

discrepancy is

1
n [EL(θ̂k + δ(k))− L(θ̂k)] = 1

n [
√
n
k E‖δ(k)‖2]

≤ 4ε2d/
√
n

using the bias-variance decomposition of the random δ(k) ∈ Rdk and the fact that each

‖δj‖ ≤ 2ε
√
d.

The two remaining expected discrepancy terms are bounded by Lemma 4.1.1. First, the

expected discrepancy of DB is bounded by

4kε
√
d

[
2ε
√
d+ E‖X̃ − EX‖+ max

j
‖Xi − EX‖

]
.

To further bound the maximum deviation term, use z ≤ (1+z2)/2 along with Lemma 3.1.6.

Finally, the log-likelihood discrepancy is bounded by

2ε2d/σ2.

Let ε = 1
2.23k

√
n

. (Note that if we knew a Bhattacharyya divergence discrepancy bound

proportional to 1/ε2, then we could use ε = n−1/4; in that case, the penalty would not need

to involve n.)

One can confirm that the penalty is large enough to eliminate the summation term:

2dk log(2
√

2πk/εn1/4) = 2dk log(4.46
√

2πk3/2n1/4)

< 3dk log 5nk.
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Thus, after rounding up, we have established that

EDB(P, Pθ̂) ≤ R
(n)

Θ, L(P ) +
d(1 + log n)√

n

[
10σ2

P + 1
σ2 + 2E‖X̃ − EX‖+ 3.1

]
.

Finally, we bound the expected redundancy using Theorem 3.0.7 then bound the infimum

over k by comparison to the particular choice k = d
√
ne ≤

√
2n.

R(n)

Θ, L(P ) = E
Xniid∼P

[
1

n

∑
i

log
p(Xi)

pθ̂(Xi)
+

 L(θ̂)

n

]

= Emin
k

[
1

n

∑
i

log
p(Xi)

pθ̂k(Xi)
+

 L(k)

n

]

≤ inf
k

[
E

1

n

∑
i

log
p(Xi)

pθ̂k(Xi)
+

 L(k)

n

]

≤ inf
k

[
D(P‖C(Φ)) +

(1 + log k)(1 + log n)η2
Φ(P )

k
+

 L(k)

n

]
≤ D(P‖C(Φ)) +

(1 + logd
√
ne)(1 + log n)η2

Φ(P )

d
√
ne

+
 L(d
√
ne)

n

≤ D(P‖C(Φ)) +
(1 + log n)2η2

Φ(P )√
n

+
 L(
√

2n)

n

≤ D(P‖C(Φ)) +
η2

Φ(P )√
n

+
8.3d(1 + log n)2

√
n

For the probabilistic result, compare to the proof of Theorem 2.1.3. To get the constant

factor 3, we used z ≤ .45 + .56z2 for the norm of ‖Xi − EX‖2.

]
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Chapter 5

Computing Gaussian radial basis

mixtures

A GRBM likelihood can be highly multimodal and therefore difficult to optimize. Indeed,

the product of the n sums can be represented as a sum of kn unimodal terms:

n∏
i=1

pθ(Xi) ∝
n∏
i=1

k∑
j=1

e−
1

2σ2 ‖Xi−µj‖2

=
∑
v∈V

n∏
i=1

e−
1

2σ2 ‖Xi−µvi‖
2

(5.1)

where V = {1, . . . , k}n indexes the set of all kn possible assignments of labels and v =

(v1, . . . , vn) denotes a labeling by having each vi ∈ {1, . . . , k}.

A typical approach to optimizing a mixture model’s likelihood is to use the expectation

maximization (EM) algorithm. One introduces hidden variables Z = [Zi,j ] where Zi,j = 1

means that observation i gets label j; with this approach, the log likelihood has a summation

form

n∑
i=1

log pθ,Z(Xi) = −
n∑
i=1

k∑
j=1

Zi,j
1

2σ2 ‖Xi − µj‖2.

The original likelihood for θ = (µ1, . . . , µk) is the marginal version of this joint likelihood.

The EM algorithm alternates between calculating the expectations ri,j := EZi,j given a θ
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and then finding the θ that optimizes the expected log likelihood. Given [ri,j ], the optimal

θ has

µ̌j := − argmax
µ∈Rd

n∑
i=1

ri,j
1

2σ2 ‖Xi − µ‖2

= argmin
µ∈Rd

n∑
i=1

ri,j‖Xi − µ‖2

= argmin
µ∈Rd

[
nj‖µ− X̄j‖2 +

n∑
i=1

ri,j‖Xi − X̄j‖2
]

= X̄j

where nj :=
∑

i ri,j and X̄j :=
∑

i
ri,j
nj
Xi. Given θ = (µ1, . . . , µk), the labels’ expectations

are

EZi,j = P[Zi,j = 1]

=
e−

1
2σ2 ‖Xi−µj‖2∑

l e
− 1

2σ2 ‖Xi−µl‖2
.

The EM iterations converge to a local optimum of the likelihood, but the result may not

actually be a good choice due to our high degree of multi-modality.

A recent line of work started by Balakrishnan et al. [2017] has side-stepped the question

of convergence to the global optimizer, instead analyzing EM’s iterative behavior to analyze

it statistical risk. That paper established general conditions under which a ball centered at

the true parameter value would be a basin of attraction for the population version of the EM

operator. For a large enough sample size, the difference (in that ball) between the sample

EM operator and the population EM operator can be bounded such that the EM estimate

approaches the true parameter with high probability. That bound is the sum of two terms

with distinct interpretations. There is an algorithmic convergence term κt‖θ(0) − θ?‖ for

initializer θ(0), truth θ?, and some modulus of contraction κ ∈ (0, 1); this comes from the

analysis of the population EM operator. The second term captures statistical convergence

and is proportional to the supremum norm of M−Mn, the difference between the population

and sample EM operators, over the ball. This result is also shown for a “sample-splitting”
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version of EM, where the sample is partitioned into batches and each batch governs a

single step of the algorithm. They show that their analysis is easily seen to apply for a

two-component GRBM.

The performance of EM for two-component GRBMs has since received further attention.

Klusowski and Brinda [2018] showed that the intersection of a suitable half-space and ball

about the the midpoint between the component means is also a basin of attraction for the

population EM in that model when the component means are separated well enough relative

to the noise. Exact probabilistic bounds on the squared norm error of the EM parameter

estimate were also derived when the initializer is in the region. We concluded the paper by

describing a random initialization strategy that has a high probability of finding the basin

of attraction when the component means are sufficiently well separated. Our work made

use of symmetries inherent to two-component GRBMs. Extending the analysis to allow for

more components will present new challenges.

In this chapter, we will explore a variety of approaches to initializing the EM algorithm

and compare the likelihoods that they produce. Section 5.1 will describe the algorithms

under consideration. Simulations in Section 5.2 will put these algorithms to the test to see

which one tends to output the θ with the highest likelihood.

5.1 Algorithms for initializing EM

A naive option for initializing EM is to generate θ at random perhaps from a Normal

distribution or by uniformly selecting from the data points. Another naive option is to

randomly generate a right stochastic matrix [ri,j ]. A more sophisticated way to generate an

initial θ is to use Markov chain Monte Carlo to draw it from a distribution resembling the

likelihood; an exciting new algorithm for such draws is introduced in Section 5.1.1. There

are also variational Bayesian algorithms for Gaussian mixtures that have garnered interest

recently; in Section 5.1.2, we explain the mean field algorithm as a way to initialize EM.

Finally, Section 5.1.3 describes a recently derived method of moments estimator that can

be used as the initial θ.
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5.1.1 Markov chain Monte Carlo

For a labeling v, let nv,j denote the number of observations assigned to label j, and let X̄v,j

be the mean of the observations with label j. Then we can almost rewrite the likelihood

from (5.1) as

n∏
i=1

pθ(Xi) ∝
∑
v∈V

k∏
j=1

e
− 1

2σ2 [nv,j‖µj−X̄v,j‖2+
∑
i:vi=j

‖Xi−X̄v,j‖2]

=
∑
v∈V

 k∏
j=1

1

n
d/2
v,j

e
− 1

2σ2

∑
i:vi=j

‖Xi−X̄v,j‖2
 k∏

j=1

n
d/2
v,j e

−
nv,j
2σ2 ‖µj−X̄v,j‖2


a density for θ that is proportional to a mixture of kn multivariate Gaussians. The expression

is not legitimate, however, because many labelings have a component with zero observations.

In a Bayesian context, on the other hand, it is possible to write the posterior as an actual

Gaussian mixture. We use independent N(α, σ
2

β Id) priors for µ1, . . . , µk.

k∏
j=1

e−
β

2σ2 ‖µj−α‖2
n∏
i=1

pθ(Xi) ∝
∑
v∈V

k∏
j=1

e
− 1

2σ2 [nv,j‖µj−X̄v,j‖2+
∑
i:vi=j

‖Xi−X̄v,j‖2+β‖µj−α‖2]

=
∑
v∈V

 k∏
j=1

1
(β+nv,j)d/2

e
− 1

2σ2 [
βnv,j
β+nv,j

‖X̄v,j−α‖2+
∑
i:vi=j

‖Xi−X̄v,j‖2]


︸ ︷︷ ︸

w(v)

×

 k∏
j=1

(β + nv,j)
d/2e−

(β+nv,j)
2σ2 ‖µj−µ̃v,j‖2


︸ ︷︷ ︸

fv(θ)

(5.2)

with µ̃v,j := β
β+nv,j

α +
nv,j

β+nv,j
X̄v,j . As the sample size grows, the posterior increasingly

resembles the normalized likelihood. A draw from (5.2) would be achieved by drawing

a labeling according to the weights proportional to {w(v) : v ∈ V} then drawing θ =

(µ1, . . . , µk) from the Gaussian density proportional to fv.

The usual MCMC algorithms have a target distribution as their steady state; they ap-

proach their steady states and thus produce approximate draws from the desired distribution

eventually. The problem is that there are typically no guarantees on how long it will take

before the process is approximately distributed according to the target. Here we introduce
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a promising new annealing technique (with similarities to population annealing, parallel

tempering, and evolutionary sampling) by which a Markov chain will be carefully guided

to (5.2); an upcoming paper in collaboration with Andrew R. Barron and Jason M. Klu-

sowski will describe the technique in more generality and will hopefully include statistical

guarantees. A key insight for our application is the following observation by Barron.

Lemma 5.1.1. Suppose V and V ′ are independent V-valued random variables both drawn

from probability density q, and let r be a probability density on V. Given V and V ′, generate

B ∼ Bern(a + r(V )−q(V )
q(V ) ) assuming a + r(V )−q(V )

q(V ) ∈ [0, 1]. Then the random variable Ṽ :=

BV + (1−B)V ′ has marginal distribution R.

We will use this trick to guide the weights of a Markov chain toward those desired in

(5.2); we call the technique teleport annealing.

If the current and target distributions are in a smoothly time-parametrized family {Qt},

we can approximate the crucial coin-flip quantity by

qt+h(v)− qt(v)

qt(v)
≈ h ∂

∂t log qt(v)︸ ︷︷ ︸
“δv(t)”

(5.3)

for small enough h. Assume Qt is a discrete distribution and let wt be proportional to qt.

δv(t) := ∂
∂t log qt(v)

= ∂
∂t log

wt(v)∑
v′∈V wt(v

′)

= ∂
∂t logwt(v)− 1∑

v′∈V wt(v
′)

∑
v′′∈V

∂
∂twt(v

′′)

= ∂
∂t logwt(v)−

∑
v′′∈V

wt(v
′′)∑

v′∈V wt(v
′)
∂
∂t logwt(v

′′)

The second term is the expectation of the first according to the weights qt. This reveals

the advantage of the approximation (5.3): rather than calculating the normalizing factor,

we will estimate the derivative of its logarithm.

In place of our original model, consider the time-parametrized family of Gaussian mix-
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ture models with density proportional to

p
(t)
θ (Xi) =

k∑
j=1

e−
1

2σ2 [(1−t)‖Xi‖2+t‖Xi−µj‖2].

As in (5.2), we express the resulting posterior as a mixture

k∏
j=1

e−
β

2σ2 ‖µj−α‖2
n∏
i=1

p
(t)
θ (Xi) ∝

∑
v∈V

k∏
j=1

e
− 1

2σ2 [tnv,j‖µj−X̄v,j‖2+t
∑
i:vi=j

‖Xi−X̄v,j‖2+β‖µj−α‖2]

=
∑
v∈V

 k∏
j=1

1
(β+tnv,j)d/2

e
− 1

2σ2 [
βtnv,j
β+tnv,j

‖X̄v,j−α‖2+t
∑
i:vi=j

‖Xi−X̄v,j‖2]


︸ ︷︷ ︸

wt(v)

×

 k∏
j=1

(β + tnv,j)
d/2e−

(β+tnv,j)
2σ2 ‖µj−µ̃

(t)
v,j‖

2


︸ ︷︷ ︸

f
(t)
v (θ)

with µ̃
(t)
v,j := β

β+tnv,j
α+

tnv,j
β+tnv,j

X̄v,j . At t = 1, this is equal to the target distribution (5.2),

while at t = 0 it assigns equal probability to all labelings which makes it easy to initialize.

Our teleport annealing algorithm will begin by drawing N uniformly random labelings

for the data, which will serve as initializations for parallel chains. For each chain, calculate

the t = 0 version of

∂
∂t logwt(v) = −

k∑
j=1

d
2

nv,j
β + tnv,j

+
1

2σ2

βnv,j
(β + tnv,j)2

‖X̄v,j − α‖2 +
1

2σ2

∑
i:vi=j

‖Xi − X̄v,j‖2
 .

(5.4)

We then estimate the expectation of this quantity by averaging these values over the N

chains. For each labeling v and time t, let δ̂v(t) denote (5.4) minus the average. Ideally,

h times the largest absolute value of δ̂v(t) is no greater than .5, so that the coin-flips of

Lemma 5.1.1 will be possible. For each chain, generate a coin-flip with heads probability

.5 + hδ̂v(t) where v is the labeling of the chain in question. If heads, then leave the chain

alone. If tails, then the chain teleports to the labeling of another chain chosen uniformly at

random from the N − 1 others.
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Since hδ̂v(t) is only an estimate of an approximation of the required quantity from

Lemma 5.1.1, we will follow each swapping step by running M steps of Gibbs sampling to

move the distribution of labels and parameters closer to the true posterior for time t. Given

a labeling v, the Gibbs sampling procedure draws independent Gaussian component means

according to the density proportional to f
(t)
v . Then given component means, the label for

the ith observation is assigned to label j with probability

e−
1

2σ2 t‖Xi−µj‖2∑k
j′=1 e

− 1
2σ2 t‖Xi−µj′‖2

.

These Gibbs sampling steps also help weaken the dependence among the parallel chains

that arises from the teleportation step.

5.1.2 Variational Bayes

Calculus of variations is the study of optimization over a space of functionals. Variational

approximation means identifying the functional in a set that is closest to a fixed target

functional. When the target functional is a probability measure with a density only known

up to a constant, the task of identifying the closest probability measure in a set is variational

Bayes.

Mean field approximation

When relative entropy (with the target as the second argument) is used to quantify closeness

and the search space comprises all probability measures with a specific product structure,

the variational Bayes problem is called mean field approximation. The approximating dis-

tribution is the information projection of the target onto the set of all probability measures

with the specified product structure. Inspired by the mean field theory of physics, Ghahra-

mani introduced this technique for statistical learning.

Suppose some target distribution on X × Y can be represented as P ⊗ {Qx} for some

probability measure P on X and a probability kernel {Qx : x ∈ X} of “conditional distribu-

tions” with densities {qx} relative to a σ-finite dominating measure. The relative entropy
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from any product measure P̌ ⊗ Q̌ to the target is1

D(P̌ ⊗ Q̌‖P ⊗ {Qx}) = EX∼P̌EY∼Q̌ log
p̌(X)q̌(X)

p(X)qX(Y )

= D(P̌‖P ) + EX∼P̌D(Q̌‖QX). (5.5)

Section A discusses the reverse compensation identity (Theorem A.0.2) which implies that

for any given P̌ , the optimal choice of Q̌ is the P̌ -geometric mixture of {Qx}. Likewise, if

the target distribution also has a representation as Q⊗{Py} with the roles of marginal and

conditional variable reversed, then the Q̌-geometric mixture of {Py} is the optimal choice of

P̌ for fixed Q̌. The same logic continues to hold if the product structure has more than two

components: any one component to be optimized plays the role of Q̌ in (5.5) while the rest of

the components together play the role of P̌ . The mean field algorithm constructs a product

measure approximation by cycling through the components in this manner, updating each

piece by setting it to the appropriate geometric mixture.2 Equation (5.5) makes it clear

that the algorithm is monotonic; each step can only decrease the relative entropy from the

product approximation to the target; furthermore, it is guaranteed to converge to a local

optimum [Bishop, 2006, Sec 10.1.1].

In Bayesian analysis, the posterior distribution represents an appropriate belief about

the unknown parameter that arises from updating a prior belief based on observed data.

However, posterior probabilities of parameter regions and posterior expectations of functions

of the parameters are often challenging to calculate. If the parameters have a conjugate

prior, then integrals can be calculated analytically; if the dimension of the parameter space

is small, then integrals can be calculated numerically. Otherwise, practitioners turn to

a variety of other approaches. Markov Chain Monte Carlo methods attempt to generate

samples from the true posterior, but it is time-consuming and can do poorly when the

posterior is badly multi-modal. Alternatively, the posterior’s mean field approximation can

1. The freedom to choose the order of integration is justified by Tonelli’s theorem because there is a an
alternative representation of relative entropy with a non-negative integrand — see Lemma A.3.1.

2. Most sources explaining the mean field algorithm put the joint distributions in place of the conditional
distributions in the expression that we call the “geometric mixture.” Both definitions result in the same
distribution, so one can use whichever is more convenient.
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have an analytically tractable form. Most convenient is when each conditional family is an

exponential family, in which case the geometric mixture is itself in that family as well3; one

simply needs to update the hyper-parameters to identify the new distribution.

Variational Bayesian methods may be useful for calculating approximate posteriors, but

they are also “statistically unsound” in a sense. Ideally, a statistical procedure should

be eventually correct, if enough data is collected and the algorithm runs long enough.

However, if for instance the correct posterior belief is that the variables are highly correlated,

the product approximations will never indicate that belief regardless of the amount of

data and run-time. Any change in the scale of a probability measure will have an exactly

corresponding change in the scale of the mean field approximation approximation since

relative entropy is scale-invariant. The resulting divergence between the probability measure

and its approximation will remain unchanged in terms of relative entropy or any other

f -divergence. Thus as a probability measure becomes more concentrated, these product

approximations do not get closer to it, at least in terms of scale-invariant divergences.

Variational Bayesian methods trade correctness for convenience, but their popularity

may be a sign that this trade-off is sometimes worth taking.

Mean field likelihood of GRBMs

The mean field algorithm applies to Bayesian estimation of Gaussian mixtures; the steps are

explained in [Bishop, 2006, Sec 10.2]. In fact, the same approach works for approximating

the likelihood of GRBMs as we now show. (Remember however that the likelihood cannot

be normalized, so the theory of information projection does not apply exactly.)

In terms of a vector of component means θ = (µ1, . . . , µk) and label matrix Z, the log

likelihood of Xn is

log pθ(X
n|Z) = −

n∑
i=1

k∑
j=1

Zi,j
1

2σ2 ‖Xi − µj‖2 + const.

We will now apply mean field theory to consider approximating joint distributions over

3. The P̌ -geometric mixture over an exponential family is the distribution corresponding to the expectation
of the canonical parameter, so the problem is simplest when x is indexing a canonical parameterization.
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(µ,Z) for which µ and Z are independent of each other. Let ri,j represent the probability

that Zi,j equals 1; with that fixed distribution of Z, the optimal distribution for θ has a log

density of the form

EZi,j∼Bern(ri,j) log pθ(X
n|Z) = −

n∑
i=1

k∑
j=1

ri,j
1

2σ2 ‖Xi − µj‖2 + const

= −
k∑
j=1

1
2σ2

[
nj‖µj − µ̄j‖2 +

n∑
i=1

ri,j‖Xi − µ̄j‖2
]

+ const

with nj :=
∑

i ri,j and µ̄j := 1
nj

∑
i ri,jXi. Thus, we conclude that the optimal distribution

has independent components and its distribution of µj is N(µ̄j , σ
2/nj). Given a fixed

distribution Q for θ, the optimal pmf of Z is proportional to

eEθ∼Q log pθ(Xn|Z) ∝ e−
∑
i

∑
j Zi,j

1
2σ2 Eθ∼Q‖Xi−µj‖2 .

The result is a product of independent multi-Bernoulli distributions, according to which

Zi,j equals 1 with probability

e−
1

2σ2 Eθ∼Q‖Xi−µj‖2∑
l e
− 1

2σ2 Eθ∼Q‖Xi−µl‖2
=

e−
1

2σ2 [‖Xi−Eµj‖2+E‖µj−Eµj‖2]∑
l e
− 1

2σ2 [‖Xi−Eµl‖2+E‖µl−Eµl‖2]
.

This provides a mean field algorithm for approximating the normalized likelihood. First,

initialize a right stochastic matrix [ri,j ] with distinct rows. Next, set nj :=
∑

i ri,j and

µ̄j :=
∑

i
ri,j
nj
Xi. Update

ri,j :=
e−

1
2σ2 ‖Xi−µ̄j‖2+1/2nj∑

l e
− 1

2σ2 ‖Xi−µ̄l‖2+1/2nl
,

and repeat until convergence. (Comparing this to the discussion that began this chapter,

we see that the mean field algorithm is nearly identical to the EM algorithm in this context;

it only differs by down-weighting the responsibilities according to the component sample

sizes.)

This algorithm can give undesirable behavior by entering a positive feedback loop that
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sends some of the components’ responsibilities to zero. Instead one may want to use the

VB algorithm for the posterior when using independent N(0, σ2Id) priors on the component

means; then the optimal distribution for component means given labels instead becomes

N(
nj
nj+1 µ̄j ,

σ2

nj+1) while the optimal responsibilities have
nj
nj+1 µ̄j in place of µ̄j and nj + 1 in

place of nj .

Take EM steps from the resulting (µ̄1, . . . , µ̄k) to obtain a local optimizer of likelihood.

We have yet to specify how the VB algorithm should be initialized; any of the other EM

initializers described in this chapter could be used, for instance.

5.1.3 Method of third moments

Method of moments estimation procedures choose a model distribution whose moments

match empirical moments of the data. For any distribution on Rd, the first moments com-

prise a vector in Rd. A particular value of the first moment may uniquely correspond

to a model distribution if the model has fewer than d parameters. The second moments

comprise a positive semi-definite matrix in Rd×d. Again, a particular combination of first

and second moments may correspond to a unique model distribution if the model has few

enough parameters. First and second moments are not sufficient to identify distributions

within higher dimensional models, but one can then make reference to higher moments.

Techniques have recently been developed to relate certain models’ parameters to the gen-

erating distribution’s tensor4 of third moments and to efficiently find a model distribution

corresponding approximately to a given set of first, second, and third moments.

The idea at the heart of the new tensor methods comes from Chang [1996] in the

context of Markov models; the idea’s generality and broader usefulness were not realized

until Anandkumar et al. and Anandkumar et al. [2014]. Specifically, the tensor trick involves

transforming a third-order tensor such that it becomes a sum of rank-one tensors built from

orthonormal vectors that relate meaningfully to the model parameters. The method is best

understood by example, and we now describe a tensor approach for estimating GRBMs

adapted from explanations in Anandkumar et al. and [Hsu and Kakade, Sec 2].

4. The concept of tensor generalizes the concepts of vectors and matrices. It means an array that can
have any specified number of dimensions.
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Let P be a GRBM with component means (µ1, . . . , µk) and component covariances σ2Id

with the number of components k no greater than the dimension5 d. Let µ denote the

matrix comprising the component means as its column vectors. It will be convenient to give

names to the sums of outer products of the component means:

Ψ := µµ′ =
∑
j

µjµ
′
j =

∑
j

µj ⊗ µj and Γ :=
∑
j

µj ⊗ µj ⊗ µj .

It turns out that if Ψ and Γ are known, then it is possible to identify the component means

within P , assuming they are linearly independent.6 Let QΛQ′ be a spectral decomposition

of Ψ with Λ ∈ Rk×k. Define the “whitening” matrix W := Λ−1/2Q′; it transforms the

component means into an orthonormal set {uj := Wµj}. We verify orthonormality by

checking that Wµ is the inverse of its transpose.

(Wµ)(Wµ)′ = W (µµ′)W ′

= Λ−1/2Q′(QΛQ′)Qλ−1/2

= Ik

Apply W ′ to each “side” of Γ to define

G : = WΓW ′W
′

=
∑
j

(Wµj)⊗ (Wµj)⊗ (Wµj)

=
∑
j

uj ⊗ uj ⊗ uj .

5. Additional variables can be constructed from the data (e.g. second-order products) if one wants to be
able to use more components.

6. If desired, one can ensure that the unknown component means are linearly independent with probability
1 by randomly translating the space.
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Let vector subscripts denote application7 into a tensor:

Gv : = G · v

=

∑
j

uj ⊗ uj ⊗ uj

 · v
=
∑
j

(v′uj)uju
′
j .

As long as v is not orthogonal to any of the {uj}, a spectral decomposition of Gv reveals

the {uj} as its eigenvectors, up to sign.8 To determine whether a sign should be reversed,

compare the corresponding eigenvalue of the spectral decomposition’s proposal to what the

eigenvalue should be: the inner product of v with the proposed uj . If they agree, the

proposed eigenvector is correct, otherwise its negative is correct.

At last, the original component means are recovered by undoing the whitening trans-

formation µj = QΛ1/2uj .

We have seen how knowledge of Ψ and Γ allows one to find the model GRBM. Next,

we will learn how Ψ and Γ relate to the first three moments of P . The first moment is

µ̄ := EX∼PX = 1
k

∑
j µj . Letting Z ∼ N(0, σ2Id), the matrix of second moments is

EX∼PXX ′ =
∑
j

1
k [E(µj + σZ)(µj + σZ)′]

= 1
kΨ + σ2Id,

and the tensor of third moments has as its (d1, d2, d3)-entry (with subscripts of X and Z

7. In the context of this example, it is usually not important to keep track of which side of the tensor a
vector is being multiplied into.

8. It is easy to ensure that no eigenvectors are missed by applying enough vectors into G; for instance,
any orthonormal basis of Rd suffices.
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denoting coordinates)

EX∼PXd1Xd2Xd3 =
∑
j

1
k [E(µj,d1 + Zd1)(µj,d2 + Zd2)(µj,d3 + Zd3)]

=
∑
j

1
k [µj,d1µj,d2µj,d3 + EZd1Zd2µj,d3Id1=d2

+ EZd1Zd3µj,d2Id1=d3 + EZd2Zd3µj,d1Id2=d3 ]

=
∑
j

1
kµj,d1µj,d2µj,d3

+
∑
j

1
kσ

2(µj,d3Id1=d2 + µj,d2Id1=d3 + µj,d1Id2=d3)

=
∑
j

1
kµj,d1µj,d2µj,d3

+ σ2(µ̄d3Id1=d2 + µ̄d2Id1=d3 + µ̄d1Id2=d3).

Notice that the first term is 1/k times the (d1, d2, d3)-entry of Γ.

From these moment derivations, we see that with data X1 = (X1,1, . . . , X1,d), . . . , Xn =

(Xn,1, . . . , Xn,d), an unbiased estimate for Ψ is

Ψ̂ := k

[
1
n

∑
i

XiX
′
i − σ2Id

]
,

and an unbiased estimate for the (d1, d2, d3)-entry of Γ is

Γ̂d1,d2,d3 := k

[
1
n

∑
i

Xi,d1Xi,d2Xi,d3 − σ2(X̄d3Id1=d2 + X̄d2Id1=d3 + X̄d1Id2=d3)

]

with X̄ denoting the sample mean.

One can apply the whitening and spectral decomposition procedures described above

to the estimates Ψ̂ and Γ̂ to get estimates µ̂1, . . . , µ̂k of the component means. This is

considered a method of moments estimator, as it corresponds to finding the model GRBM

whose first three moments approximately match the empirical moments.

Given a tensor that is a sum of no more than d rank-one tensors built of orthonormal
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vectors

G =
∑
j

uj ⊗ uj ⊗ uj ,

we noted that the {uj} comprise the spectral decomposition of Gu for a uniformly random

unit vector u. Anandkumar et al. [2014] also describes an alternative algorithm for finding

{uj} called the tensor power method. It starts with a random u, then iterates

u(t+1) ← Gu(t)u(t)

‖Gu(t)u(t)‖
.

The {uj} are fixed points. They are also maximizers of u′Guu. In fact, Hölder’s identity

(Corollary B.0.5) exactly characterizes the change in that objective function in terms of

unnormalized Rényi divergences Dλ, defined in Section A.1. An immediate consequence of

Theorem 5.1.2 is that the nonlinear power steps are monotonic in the orthonormal case.

Theorem 5.1.2. Let Mu =
∑K

k=1 ck(u
′αk)

pαkα
′
k with integer p ≥ 1, reals c1, . . . , cK ≥ 0,

and orthonormal vectors α1, . . . , αK . Define J(u) = u′Muu, and let R denote a nonlinear

power iteration step. Then

J(Rt+1(u))

J(Rt(u))
= exp

(
D1/(p+3)(Pt‖Qt) +

p+ 2

2
D2/(p+3)(Pt‖Qt)

)

where Pt and Qt are probability distributions on {1, . . . ,K} with masses

Pt({k}) ∝ c
(p+2)(p+1)t+1−2

p

k (u′αk)
(p+2)(p+1)t+1

and Qt({k}) ∝ (u′αk)
2(p+1)t .

Note that in practice, the estimated version of G does not have such an orthonormal

internal structure.

5.2 Simulation

Next we will simulate data from complicated distributions to compare these algorithms’

ability to find parameters with large likelihood. Our observations will not be exhaustive or
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final. The purpose is simply to get a glimpse of a small piece the picture and to provide

example code that others can use for running or comparing these algorithms.

Our simulation generates 100 Gaussian mixtures according to the following procedure:

the number of components is Pois(100), their relative weights are independently Exp(1),

their means are drawn independently from N(0, Id), and finally a number is drawn from

Exp(1) and is used as the rate parameter in an exponential distribution that generates the

components’ standard deviations. Each of these 100 randomly generated distributions is

used to generate an iid random sample with n = 100 and d = 12. The GRBM model for

fitting the data uses σ = 1 and k = 8.

For each of the 100 datasets, the five algorithms described above are used to initialize

EM. The simplest is a Gaussian initialization which simply draws initial component means

independently from a Normal centered at the sample average and having standard deviations

equal to 2 times the standard deviations the data in each dimension. The mean field

algorithm from Section 5.1.2 is also performed using simple Gaussian initialization for itself.

The method of third moments described in Section 5.1.3 is tried as well; repeated use

tensor power iterations gives us k = 8 vectors, with each subsequent initializer randomly

selected from the space orthogonal to the previously revealed vectors. Next, the Hartigan-

Wong k-means algorithm generates initializers. The next method is three steps of Gibbs

sampling starting with uniformly random labels. Finally, we perform the teleport annealing

algorithm from Section 5.1.1 (using α = 0, β = 1, and h = .05) that alternates between five

teleportation steps and one Gibbs sampling step.9

Each algorithm is allowed roughly the same amount of computing time. Specifically, we

perform a single run of the teleport annealing algorithm that generates 5000 initial points,

runs EM from them, and calculates the resulting likelihoods; the other algorithms are tried

repeatedly for about that same amount of time. Table 5.1 lists the number of initializers we

will receive from each algorithm. After performing EM to reach local optima, the largest

log likelihood achieved by each initialization algorithm is recorded.

The final result is a data frame of 100 rows (one for each random dataset) and 5 columns

9. Earlier simulations were performed to tune the settings for the algorithms under final consideration.
The code is available at quantitations.com/research.

75



Gaussian mean field third moments k-means Gibbs sampling teleport annealing

6250 4500 6000 20000 5000 5000

Table 5.1: The number of initializers each algorithm generated for the simulated datasets.

(one for each algorithm); entry (i, j) is the best log-likelihood achieved by the jth algorithm

on the ith dataset. Each row is then “standardized” by subtracting the average of the six

and dividing by their standard deviation plus one. The Gaussian initialization is considered

a baseline, and its best log likelihood (standardized) is subtracted from that of the other

algorithms. The grid of scatterplots in Figure 5.1 shows how well our algorithms did relative

to each other. In this simulation, the k-means algorithm was remarkably dominant at

providing initializers that converged to parameter values of large likelihood. This is likely

explained in part by the fact that the algorithm works rapidly and thus gets many more

tries.

To the extent that this simulation generalizes to other datasets, it suggests that a good

way to find parameter values of large likelihood is to perform EM using a vast number of

k-means solutions as initializers.

5.3 Proofs

Proof of Lemma 5.1.1. The proof is easiest to understand for discrete V with q and r as

probability mass functions.

P{Ṽ = v} = P{V = v ∩B = 1}+ P{V ′ = v ∩B = 0}

= P{V = v}P{B = 1|V = v}+ P{V ′ = v}P{B = 0}

= q(v)(a+ r(v)−q(v)
q(v) ) + q(v)

∑
v′∈V

q(v′)(1− a− r(v′)−q(v′)
q(v′) )

= aq(v) + r(v)− q(v) + (1− a)q(v)− q(v)
∑
v′∈V

(r(v′)− q(v′))

= r(v)

The logic extends beyond the case of discrete V if mathematical care is taken.

Proof of Lemma 5.1.2. Andrew R. Barron realized that Hölder’s inequality can be used
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Figure 5.1: For each of 100 randomized datasets, the six algorithms under consideration
were used to generate the number of initializers specified in Table 5.1, and each algorithm’s
best resulting log likelihood was recorded. For each of the 100 trials, the five algorithm’s
values were standardized, then the Gaussian initializations’ best log likelihood value was
subtracted from the others. The diagonal of our grid shows how the algorithm did relative
to the simple Gaussian algorithm, while the off-diagonals show how they compared head-
to-head. The y = x dotted line splits the points according to which algorithm found an
estimator of larger likelihood.
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to show that the nonlinear power iterations monotonically increase the objective function in

this context. A more precise result comes from instead using Hölder’s identity (particularly

Theorem B.0.6).

Rt has a convenient closed form that can be seen by looking at the first few iterates.

R(u) ∝Muu

=
∑

cku
p+1
k αk

where u1, . . . , uK denote the “coordinates” of u in the α basis, i.e. the inner products of

u with α1, . . . , αK . The updated coordinates are proportional to ck(uk)
p+1. These can be

substituted in to find the next iterate.

R2(u) := R(R(u))

∝
∑

ck(cku
p+1
k )p+1αk

=
∑

ckc
p+1
k u

(p+1)2

k αk

The third step is

R3(u) := R(R2(u))

∝
∑

ck(ckc
p+1
k u

(p+1)2

k )p+1αk

=
∑

ckc
p+1
k c

(p+1)2

k u
(p+1)3

k αk.

We can see the pattern: Rk(u) will have coordinates proportional to u
(p+1)t

k times ck taken

to the following power:

t−1∑
j=0

(p+ 1)j =
(p+ 1)t − 1

(p+ 1)− 1

=
(p+ 1)t − 1

p
.
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To be exact,

Rt(u) =

∑
c
−1/p
k (c

1/p
k uk)

(p+1)tαk

‖
∑
c
−1/p
k (c

1/p
k uk)(p+1)tαk‖

=

∑
c
−1/p
k (c

1/p
k uk)

(p+1)tαk√∑
c
−2/p
k (c

1/p
k uk)2(p+1)t

=

∑
c
−1/p
k rt,kαk√∑
c
−2/p
k r2

t,k

where rt,k := (c
1/p
k uk)

(p+1)t . Notice the recursive relationship rt+1,k = rp+1
t,k . We can see

how the algorithm evolves from u: it rapidly places an increasing proportion of its weight

on whichever coordinate has the largest c
1/p
k uk.

The objective function simplifies to

J(u) =
∑

ck(u
′αk)

p+2.

After t iterations, it is

J(Rt(u)) =
∑
k

ck(R
t(u)′αk)

p+2

=

∑
ck(c

−1/p
k rt,k)

p+2

(
∑
c
−2/p
k r2

t,k)
(p+2)/2

=

∑
c
−2/p
k r

(p+2)
t,k

(
∑
c
−2/p
k r2

t,k)
(p+2)/2

.

The ratio of interest is

J(Rt+1(u))

J(Rt(u))
=

∑
c
−2/p
k r

(p+2)
t+1,k /(

∑
c
−2/p
k r2

t+1,k)
(p+2)/2∑

c
−2/p
k r

(p+2)
t,k /(

∑
c
−2/p
k r2

t,k)
(p+2)/2

=

∑
c
−2/p
k r

(p+1)(p+2)
t,k /(

∑
c
−2/p
k r

2(p+1)
t,k )(p+2)/2∑

c
−2/p
k r

(p+2)
t,k /(

∑
c
−2/p
k r2

t,k)
(p+2)/2

.
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Considering the c
−2/p
k as weights, we apply Hölder’s identity to the numerator of J(Rt(u)).

∑
c
−2/p
k r

(p+2)
t,k =

∑
c
−2/p
k [r

(p+1)(p+2)
t,k ]1/(p+3)[r2

t,k]
(p+2)/(p+3)

= e−D1/(p+3)(Pt‖Qt)
[∑

c
−2/p
k r

(p+1)(p+2)
t,k

]1/(p+3) [∑
c
−2/p
k r2

t,k

](p+2)/(p+3)

Making this substitution,

J(Rt+1(u))

J(Rt(u))
= eD1/(p+3)(Pt‖Qt)

(
∑
c
−2/p
k r

(p+1)(p+2)
t,k )1−1/(p+3)(

∑
c
−2/p
k r2

t,k)
(p+2)/2−(p+2)/(p+3)

(
∑
c
−2/p
k r

2(p+1)
t,k )(p+2)/2

= eD1/(p+3)(Pt‖Qt)

(
∑
c
−2/p
k r

(p+1)(p+2)
t,k )2/(p+3)(

∑
c
−2/p
k r2

t,k)
(p+1)/(p+3)∑

c
−2/p
k r

2(p+1)
t,k

(p+2)/2

.

(5.6)

Finally, realize that the denominator of this fraction can be expressed as

∑
c
−2/p
k r

2(p+1)
t,k =

∑
c
−2/p
k [r

(p+1)(p+2)
t,k ]2/(p+3)[r2

t,k]
(p+1)/(p+3)

= e−D2/(p+3)(Pt‖Qt)
[∑

c
−2/p
k r

(p+1)(p+2)
t,k

]2/(p+3) [∑
c
−2/p
k r2

t,k

](p+1)/(p+3)

where the last step used Hölder’s identity once again. Substitute this into (5.6) to complete

the proof.
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Appendix A

The compensation identities

Theorem A.0.1, called the compensation identity by [Topsøe, 2001, Thm 9.1], conveniently

decomposes the expected relative entropy from a random probability measure to a fixed

probability measure.1

Theorem A.0.1 (The compensation identity). Let {qx : x ∈ X} be a family of probability

densities with respect to a σ-finite measure γ, and suppose that (x, y) 7→ qx(y) is product

measurable. Let X ∼ P be an X -valued random element. For any probability measure R

defined on the same measurable space as γ,

ED(QX‖R) = D(Q̄P ‖R) + ED(QX‖Q̄P )

where Q̄P represents the P -mixture over {qx}.

A less familiar decomposition, which we will call the reverse compensation identity,

holds when the expected relative entropy’s second argument is random rather than its first.

Instead of a mixture, it involves a geometric-mixture.2 We define the P -geometric mixture

of {qx} to be the probability measure with density

q̃P (y) :=
eEX∼P log qX(y)∫

eEX∼P log qX(y)dγ(y)
.

1. This chapter’s proofs are at the end.

2. What we call a “geometric mixture” is sometimes called a “log mixture” or “log-convex mixture,” for
instance by [Grünwald, 2007, Sec 19.6].

81



Jensen’s inequality and Tonelli’s theorem together provide an upper bound for the denom-

inator.

∫
eE log qX(y)dγ(y) ≤ E

∫
elog qX(y)dγ(y)

= 1

This integral can be zero, however, in which case the geometric-mixture is not well-defined.3

Theorem A.0.2 (The reverse compensation identity). Let {qx : x ∈ X} be a family of

probability densities with respect to a σ-finite measure γ, and suppose that (x, y) 7→ qx(y) is

product measurable. Let X ∼ P be an X -valued random element. If
∫
eE log qX(y)dγ(y) > 0,

then for any probability measure R defined on the same measurable space as γ,

ED(R‖QX) = D(R‖Q̃P ) + ED(Q̃P ‖QX)

where Q̃P represents the P -geometric mixture over {qx}.

A two-point distribution version of Theorem A.0.2 is implied by [Csiszár and Matúš,

2003, Eq (3) with (4)] and similarly for any finite set of discrete distributions by [Veldhuis,

2002, Eq (9)].

A.1 Bias-variance decomposition

Theorems A.0.1 and A.0.2 are perfectly analogous to the bias-variance decomposition for

Hilbert-space-valued random vectors.4 The expected divergence from the a random element

to a fixed element decomposes into the divergence from a “centroid” of the random element

to that fixed element plus the internal variation of the random element from its centroid.5

3. An example of such a pathological case is when qX has positive probabilities on two densities that are
mutually singular.

4. In fact, the compensation identity and bias-variance decomposition are both instances of the same
decomposition that works for all Bregman divergences — see [Telgarsky and Dasgupta, Lem 3.5] and Pfau
[2013].

5. It follows that the centroid is the choice of fixed element that has the smallest possible expected
divergence from the random element.
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We suggest a notation that makes use of this intuition:

V̄QX : = inf
R

ED(QX‖R)

= ED(QX‖Q̄P )

and6

ṼQX : = inf
R

ED(R‖QX)

=


ED(Q̃P ‖QX), if

∫
eE log qX(y)dγ(y) > 0

∞, otherwise.

We also suggest the terminology information risk (I-risk), information bias (I-bias) squared,

and information variance (I-variance) for the quantities in the compensation identity as

well as the terminology reverse information risk (rI-risk), reverse information bias (rI-bias)

squared, and reverse information variance (rI-variance) for the quantities in the reverse

compensation identity. The language introduced here comports with that of information

projections (I-projections) and reverse information projections (rI-projections).

There are straight-forward information-theoretic interpretations of the variance-like quan-

tities. Roughly speaking, V̄QX represents the smallest possible expected code-length redun-

dancy one can achieve when the coding distribution is the random QX ; to achieve it, one

sets the decoding distribution to be Q̄P . On the other hand, ṼQX represents the smallest

possible expected code-length redundancy when the decoding distribution is the random

QX ; to achieve it, one sets the coding distribution to be Q̃P .

V̄QX := infR ED(QX‖R) is equivalent to the familiar mutual information between X

and Y considering (X,Y ) ∼ P ⊗ {Qx} as a joint distribution. More generally, the term

f -informativity has been used by Csiszár [1972] for infR EDf (QX‖R) in the context of an

arbitrary f -divergence Df .

Two-point distribution versions of these variance-like quantities are often used as diver-

6. The alternative representation of Ṽ presented below is justified by Lemma A.3.4.
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gences. The Jensen-Shannon divergence between probability measures Q and R is V̄ of the

random probability measure that takes values Q and R each with probability 1/2.

DJS(Q,R) := 1
2D
(
Q‖Q+R

2

)
+ 1

2D
(
R‖Q+R

2

)

Unnormalized Bhattacharyya divergence7 is the Ṽ analogue:

DUB(Q,R) = 1
2D
( √

qr
γ
√
qr‖q

)
+ 1

2D
( √

qr
γ
√
qr‖r

)

where q and r are densities of Q and R with respect to γ, and γ
√
qr is short-hand for∫ √

q(y)r(y)dγ(y) using de Finetti notation.8 The derivation is straight-forward using the

definition DUB(Q,R) := log 1
γ
√
qr , but it is more easily seen via Lemma A.3.2. Unnormalized

Renyi divergence is a generalization Dλ(Q‖R) := log 1
γ qλr1−λ , and a random distribution

that takes values Q with probability λ and R with probability 1− λ has a Ṽ of Dλ(Q‖R).

The compensation identities can provide insights regarding regularization, and we con-

clude this subsection with one such observation. A simple way to regularize a point-

estimator θ̂ is by shrinking it toward any constant point θ0. The variance of [1− λ]θ̂ + λθ0

is [1 − λ]2 times the variance of the original estimator θ̂. Similarly, a density estimator’s

I-variance can always be decreased by mixing with a fixed distribution.

Theorem A.1.1. Let {qx : x ∈ X} be a family of probability densities with respect to a

σ-finite measure γ, and suppose that (x, y) 7→ qx(y) is product measurable. Let X be an

X -valued random element. For any fixed known probability measure Q̌, the I-variance of

the mixture V̄([1− λ]QX + λQ̌) is non-increasing as λ ∈ [0, 1] increases. The I-variance is

strictly decreasing unless QX equals Q̌ with probability one.

7. This terminology is based on [Grünwald, 2007, Eq (19.38).].

8. The de Finetti notation writes measures like ordinary functionals that can be applied to measurable
functions; it is summarized (and advocated) in [Pollard, 2002, Sec 1.4].
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A.2 Bayes rules

Suppose a random probability measure QX is known to have X ∼ P . The compensation

identity tells us that Q̄P is the “best” fixed representative for QX in terms of having the

smallest expected D(QX‖ · ). Likewise, the reverse compensation identity tells us that Q̃P

is the representative with the smallest expected D( · ‖QX).

This situation arises in decision theory with regard to Bayesian statistics. A Bayes rule

is a decision rule that minimizes the expected risk, where the expectation is taken with

respect to some “prior” distribution on the parameter space. Let L be a non-negative

product measurable loss function, let d denote a decision rule, and let P0 and Pn(Y ) denote

prior and posterior distributions on a parameter space X with “data” Y taking values in

Y. Tonelli’s theorem justifies a change in the order of integration that verifies

EX∼P0EY∼QXL(X, d(Y )) = EY∼Q̄P0
EX∼Pn(Y )L(X, d(Y )).

Any decision rule minimizing the posterior expected loss EX∼Pn(y)L(X, d(y)) for every pos-

sible data value y ∈ Y is clearly a Bayes rule.

If the loss used is L(X, · ) = D(QX‖ · ), the compensation identity tells us that the

posterior mixture d(Y ) = Q̄Pn(Y ) minimizes the expected loss and is therefore the Bayes

rule. From a Bayesian point of view, this observation is particularly satisfying since the

posterior mixture is also the Bayesian’s belief about what the next draw of datum will

be; for this reason, it is also called the “predictive mixture.” Furthermore, based on the

information theoretic interpretation of relative entropy as coding redundancy, it makes sense

that the true data-generating distribution QX is the first argument.

On the other hand, for the loss L(X, · ) = D( · ‖QX), we know by the reverse compen-

sation identity that d(Y ) = Q̃Pn(Y ) must be the Bayes rule. We will call this distribution

the posterior geometric mixture. It does not have the Bayesian interpretation of the ordi-

nary posterior mixture, but from a purely decision theoretic point of view, the posterior

geometric mixture is a perfectly sensible choice as well.

As the sample size increases, the distinction between the posterior mixture and the
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posterior geometric mixture can become unimportant. This is because a highly concentrated

P (with concentration quantified by Ṽ) has its centroids Q̃P and Q̄P close to each other.

To see why, first note that q̃P ≤ q̄P /
∫
eE log qX(y)dγ(y). This results from applying Jensen’s

inequality to the numerator of q̃P :

eE log qX(y) ≤ elogEqX(y)

= EqX(y)

with equality if and only if P is a point-mass. Thus

D(Q̃P ‖Q̄P ) = E
Y∼Q̃P log

q̃P (Y )

q̄P (Y )

≤ Q̃P log
q̄P /

∫
eE log qX(y)dγ(y)

q̄P

= log
1∫

eE log qX(y)dγ(y)

= ṼX∼PQX .

It would be nice if we could relate Ṽ to more familiar ways of quantifying concentration.

For now, we can at least relate it to more familiar conditions for asymptotic convergence.

Given a sequence of probability measures (Pn) on X indexing a family {Qx}, we will point

to a few sufficient conditions for ensuring that the sequence has ṼX∼PnQX going to zero.

A helpful observation is that by Fatou’s Lemma,

lim inf
n

∫
eEX∼Pn log qX(y))dγ(y) ≥

∫
elim infn EX∼Pn log qX(y)dγ(y)

If at every y, EX∼Pn log qX(y) converges to the log of some limiting probability density, then

this bound becomes 1, which makes

lim sup
n

ṼX∼PnQX = log
1

lim infn
∫
eEX∼Pn log qX(y)

dγ(y)

be bounded by 0. If (Pn) converges in total variation to a point-mass δx0 , then indeed

EX∼Pn log qX(y) → log qx0(y) at every y. Weaker notions of convergence to δx0 paired
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with appropriate regularity assumptions on (x, y) → qx(y) can also result in point-wise

convergence to qx0 ; the Portmanteau Theorem can be used, for example.

A.3 Proofs

It is known that relative entropy can be expressed in terms of a non-negative inte-

grand. This fact enables us to use Tonelli’s theorem to justify interchanges in the order of

integration.9

Lemma A.3.1. Let {qx : x ∈ X} and {rx : x ∈ X} be families of probability densities with

respect to a σ-finite measure γ, and suppose that both (x, y) 7→ qx(y) and (x, y) 7→ rx(y) are

product measurable. For any X -valued random element X,

Eγ qX log
qX
rX

= γ EqX log
qX
rX
.

Proof. We use the fact that log z ≤ z − 1, then invoke Tonelli’s theorem.

Eγ qX log
qX
rX

= Eγ qX
[
rX
qX
− 1− log

rX
qX

]
= γ EqX

[
rX
qX
− 1− log

rX
qX

]
= γ ErX − γ EqX − γ EqX log

rX
qX

= E γ rX︸︷︷︸
1

−E γ qX︸︷︷︸
1

+γ EqX log
qX
rX

9. The proofs in this section use a combination of integral notations: the expectation symbol (E) for
probability measures and de Finetti notation for more general integrals.
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Proof of Theorem A.0.1. Lemma A.3.1 justifies changing the order of integration.

ED(QX‖R) = Eγ qX log
qX
r

= Eγ qX log
q̄

r
+ Eγ qX log

qX
q̄

= γ EqX︸︷︷︸
q̄

log
q̄

r
+ ED(QX‖Q̄)

Lemma A.3.2. Let {qx : x ∈ X} be a family of probability densities with respect to a

σ-finite measure γ, and suppose that (x, y) 7→ qx(y) is product measurable. Let X ∼ P be

an X -valued random element. If γ eE log qX > 0, then for any probability measure R defined

on the same measurable space as γ,

ED(R‖QX) = D(R‖Q̃P ) + log
1

γ eE log qX
.

Proof. Making use of the central trick from the explanations of the mean field approximation

algorithm (e.g. Ormerod and Wand [2010]), we have

ED(R‖QX) = ER log
r

qX

= RE log
r

qX

= R[log r − E log qX ]

= R[log r − log eE log qX ]

= R log
r

eE log qX

= R log
r

eE log qX/γ eE log qX
+ log

1

γ eE log qX
.

Again, Lemma A.3.1 justifies the order interchange.

Lemma A.3.3. Let {qx : x ∈ X} be a family of probability densities with respect to a

σ-finite measure γ, and suppose that (x, y) 7→ qx(y) is product measurable. Let X ∼ P be
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an X -valued random element. If γ eE log qX > 0, then

ED(Q̃P ‖QX) = log
1

γ eE log qX
.

Proof. Use Q̃P as R in Lemma A.3.2.

Proof of Theorem A.0.2. Combine Lemmas A.3.2 and A.3.3.

Lemma A.3.4. Let {qx : x ∈ X} be a family of probability densities with respect to a σ-finite

measure γ, and suppose that (x, y) 7→ qx(y) is product measurable. Let X be an X -valued

random element. If γ eE log qX = 0, then for any probability measure R, ED(R‖QX) =∞.

Proof. The integrand of γ eE log qX is non-negative, so the integral being zero implies that

E log qX = −∞ γ-almost everywhere. Since γ dominates R, the condition also holds R-

almost everywhere.

By Lemma A.3.1,

ED(R‖QX) = RE log
r

qX

= R [log r − E log qX ].

Our previous observation tells us that γ eE log qX = 0 implies that the integrand log r −

E log qX equals ∞ with R-probability 1, so ED(R‖QX) =∞.

Proof of Theorem A.1.1. With P representing the distribution of X, the mixture’s cen-

troid is [1− λ]Q̄P + λQ̌.

For any λ1 ∈ [λ, 1], a draw from [1 − λ1]Qx + λ1Q̌ can be achieved by “processing” a

draw from [1 − λ]Qx + λQ̌. One simply needs to switch it to a new draw from Q̌ with

probability λ1−λ
1−λ . The data processing inequality tells us that two processed distributions

are no further in relative entropy than the unprocessed distributions were.

The same processing that transforms [1−λ1]Qx+λ1Q̌ to [1−λ]Qx+λQ̌ also transforms
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the centroids appropriately. Thus by the data processing inequality,

D([1− λ1]Qx + λ1Q̌ ‖ [1− λ1]Q̄P + λ1Q̌) ≤ D([1− λ]Qx + λQ̌ ‖ [1− λ]Q̄P + λQ̌).

Since this holds for every x ∈ X , it holds for any expectation over X .
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Appendix B

Hölder’s identity

Hölder’s inequality is most commonly written

∫
|f(y)g(y)|dγ(y) ≤ ‖f‖p‖g‖q (B.1)

for conjugate exponents p and q. An alternative way of expressing this is to say that for

any pair of non-negative functions f and g and any α ∈ [0, 1],

∫
fα(y)g1−α(y)dγ(y) ≤

(∫
f(y)dγ(y)

)α(∫
g(y)dγ(y)

)1−α
. (B.2)

In other words, the integral of the point-wise geometric average of two functions is bounded

by the geometric average of their integrals. In fact, this relationship holds for arbitrary

geometric expectations over a random element indexing functions.1

Theorem B.0.1 (Hölder’s inequality). Let X and Y be measurable spaces, and let f :

X × Y → R+ be product measurable. For any measure γ on Y and any X -valued random

element X such that E log
∫
f(X, y)dγ(y) > −∞,

∫
eE log f(X,y)dγ(y) ≤ eE log

∫
f(X,y)dγ(y).

Inequalities (B.1) and (B.2) represent the two-point distribution version of Theorem B.0.1.

1. This chapter’s proofs are at the end.
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The generalization for an arbitrary finite measure on X is easy to derive by normalizing

and then applying the result for probability measures.

Corollary B.0.2. Let X and Y be measurable spaces, and let f : X × Y → R+ be product

measurable. For any measure γ on Y and finite measure µ on X ,

∫
e
∫

log f(x,y)dµ(x)dγ(y) ≤ e
1

µ(X )

∫
[log

∫
f(x,y)µ(X )dγ(y)]dµ(x)

.

Using ef as the function in Theorem B.0.1, and taking the log of both sides gives us an

equivalent inequality that is also worth stating.

Corollary B.0.3. Let X and Y be measurable spaces, and let f : X × Y → R be product

measurable. For any measure γ on Y and any X -valued random element X,

log

∫
eEf(X,y)dγ(y) ≤ E log

∫
ef(X,y)dγ(y).

The fact that Hölder’s inequality holds in this generality is perhaps not widely known.

For example, Karakostas [2008] proved an extension of Hölder’s inequality to countable

products assuming γ is σ-finite; that result was improved by [Chen et al., 2016, Thm

2.11]. The inequalities they present are readily subsumed by Corollary B.0.2 by letting µ

concentrate on a countable set.

[Haussler and Opper, 1997, Lemma 1] states our Corollary B.0.3, but the justification

presented there is not quite adequate. They observe, using the two-point distribution version

of Hölder’s inequality, that the mapping f 7→ log γ ef is convex on the space of real-valued

functions on a set. [Pettis] expectations commute with continuous affine functionals, and

Jensen’s inequality relies on the expectation commuting with a continuous affine functional

tangent to the convex function. The existence of a tangent continuous affine functional is

guaranteed for convex functions on finite-dimensional spaces, but not on infinite-dimensional

spaces. As a simple example, consider any discontinuous linear functional; it is convex, but

it has no continuous affine functional tangent to it. For a more concrete example, see

[Perlman, 1974, Introduction].

Haussler and Opper [1997] reference Symanzik [1965] where the inequality in our Theo-
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rem B.0.1 is stated and called generalized Hölder’s inequality ; he points to the classic text

[Dunford and Schwartz, 1958, VI.11 Ex 36] where it is left as an exercise. Although that

exercise does not say to assume σ-finiteness, the proof they hint at does require it. For

σ-finite measures, at least, the proof can follow a different route from the one they hint at.

We establish an identity that has an information-theoretic interpretation involving the non-

negative “variance” functional Ṽ for random probability measures defined and interpreted

in Chapter A.

Theorem B.0.4. Let X and Y be measurable spaces, and let f : X × Y → R be product

measurable. Let γ be a σ-finite measure on Y, and let X ∼ P be an X -valued random

element. If
∫
ef(x,y)dγ(y) is in (0,∞) P -almost surely and E log

∫
ef(X,y)dγ(y) > −∞, then

E log

∫
ef(X,y)dγ(y)− log

∫
eEf(X,y)dγ(y) = ṼQX

where Qx has density qx(y) := ef(x,y)∫
ef(x,y)dγ(y)

with respect to γ.

Corollary B.0.5 (Hölder’s identity). Let X and Y be measurable spaces, and let f :

X × Y → R+ be product measurable. Let γ be a σ-finite measure on Y, and let X ∼

P be an X -valued random element. If
∫
f(x, y)dγ(y) is in (0,∞) P -almost surely and

E log
∫
f(X, y)dγ(y) > −∞, then

eE log
∫
f(X,y)dγ(y)∫

eE log f(X,y)dγ(y)
= eṼQX

where Qx has density qx(y) := f(x,y)∫
f(x,y)dγ(y)

with respect to γ.

In the special case that X only takes two possible values, ṼQX is an unnormalized Renyi

divergence Dλ between the two possible distributions, as described in Section A.

Theorem B.0.6. Let Y be a measurable space, and let f : Y → R+ and g : Y → R+ have

finite positive γ-integrals. Then

[
∫
f(y)dγ(y)]λ[

∫
g(y)dγ(y)]1−λ∫

fλ(y)g1−λ(y)dγ(y)
= eDλ(Q‖R)

where Q has density f(y)∫
f(y)dγ(y)

and R has density g(y)∫
g(y)γ(y)

with respect to γ.
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B.1 Proofs

Proof of Theorem B.0.4. We will write f(X, ·) as fX . The key is Lemma A.3.3.

log γ eEfX = log γ eE log[efX /γ exp fX ] + E log γ efX

= −ED(Q̃P ‖QX) + E log γ efX

if the geometric mixture is well-defined.2

Next, assume that the geometric mixture is not well-defined; in other words, γ eE log(efX /γ efX ) =

0. Because the integrand is non-negative, the integral can only be zero if the integrand is

zero γ-almost everywhere. This requires the exponent, which simplifies to E[fX− log γ efX ],

to be −∞ almost everywhere. Assume that there exists a non-negligible set for which

EfX > −∞. Then on that set, E[fX − log γ efX ] can only be −∞ if E log γ efX is ∞. Fur-

thermore, the contribution of that non-negligible set ensures that log γ eEfX is also strictly

greater than −∞, which tells us that the two sides of the proposed identity are both ∞.

In the one remaining case, the geometric mixture does not exist and EfX = −∞ almost

everywhere. These imply that VQX =∞ and log γ eEfX = −∞, respectively. The theorem

specifies that E log γ efX > −∞, so again the identity reduces to ∞ =∞.

An interesting observation is implicit in the above proof: E log γ efX = −∞ is only

possible if EfX = −∞ almost everywhere.

A closely related derivation in [Barron, 1988, Sec 4] was instructive; the accompany-

ing discussion in that paper provides another interpretation of the quantities involved in

Hölder’s identity.

Proof of Theorem B.0.1. When its conditions are met, Hölder’s identity (Theorem B.0.5)

implies the desired inequality result by non-negativity of Ṽ.

Proof of Theorem B.0.6. Define the product measurable function hx(y) with x taking

values in X = {1, 2} with h1(y) = f(y) and h2(y) = g(y). By the definition of unnor-

malized Renyi divergence, Ṽ of the random distribution is equal to Dλ(Q‖R) according to

2. The proofs in this section use a combination of integral notations: the expectation symbol (E) for
probability measures and de Finetti notation for more general integrals.
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Lemma A.3.3. Therefore, the desired result is a direct consequence of Holder’s identity, at

least when γ is σ-finite. However, we deliberately omitted the σ-finiteness requirement. In

fact, the reason we required σ-finiteness in previous Lemmas and Theorems was to justify

interchanges in the order of integration. When one of the integrals concentrates on a finite

set of atoms, then interchange is always valid by linearity of integration. Indeed, when X

is finite, the Lemmas and Theorems of this paper are valid without the condition that γ

is σ-finite. Alternatively, the sum of any finite collection of probability measures is itself a

finite dominating measure for each of their densities.
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Appendix C

Hypothetical measures

A central aspect of measure theory is the extension of non-negative countably additive set

functions (known as premeasures) to larger domains. A σ-finite premeasure γ defined on a

semi-algebra has a unique extension to a measure on the σ-algebra generated by its domain,

by the Carathéodory construction [Bogachev, 2007, Prop 1.3.10].1 An interpretation of

this in terms of real-world modeling is that the premeasure is a state of knowledge of a

substance’s mass on certain sets; the substance’s mass on some other sets can be inferred

by the nature of mass, that is, non-negativity and countable additivity. What about a set

A that is not in the completion of the σ-algebra generated by the original domain? We

may not be able to infer a mass that it must have, but we can still exclude some values.

Any value strictly less than its γ-induced inner measure (supremum of masses of its subsets)

should be considered unreasonable, as should any value strictly larger than its outer measure

(infimum of masses of its supersets). In fact, if the outer measure of A is finite, then given

any value z between the inner and outer measure of A there exists an extension of γ to a

measure on the σ-algebra generated by the original domain and A that assigns a measure

of z to A [Bogachev, 2007, Thm 1.12.14]. It is sensible to conclude that any value in that

range might be the “true” mass of A. This reasoning seems preferable to an insistence that

conditions must be imposed to avoid the possibility of “unmeasurable” sets.

1. A measure has a unique extension to its completion, also via Carathéodory construction. And integration
is a unique extension of the domain from indicator functions to measurable functions [Pollard, 2002, Sec
2.3].
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This line of thinking can be implemented in a simpler and more powerful way than one

might expect. Let γ be a premeasure on Ω with domain Σ, and let f be a function on

Ω. Suppose A ⊆ 2Ω is at least fine enough that f is σ(Σ ∪ A)-measurable. We define the

hypothetical measure (we will say hypomeasure, for short) γAf to be an indexed family where

the indices are extensions of γ to σ(Σ ∪ A) and each such extension indexes the integral

of f according to that measure.2 One might prefer to omit the superscript by letting A

be σ-algebra generated by f by default, or more generally letting A be the union of the

σ-algebras generated by the functions that are to be integrated in the statement at hand.

It is appropriate that this results in the hypomeasure notation being indistinguishable from

the ordinary integral, because the hypomeasure extends the concept of integral: when f is

Σ-measurable, the hypomeasure γσ(f)f is constant (equal to its ordinary integral’s value)

and can be treated as such.

The facts and operations that are valid for ordinary measures continue to hold point-

wise for hypomeasures. By proceeding as if every function were measurable, one produces

equations and inequalities that hold point-wise, where the points are the extensions of γ.

To see why this approach is more powerful than just calculating inner and outer mea-

sures, consider the following simple example. Let f1 be the indicator function of an un-

measurable set A, and let f2 be 2 times the indicator function of A. Suppose A has inner

measure 0 and outer measure 1. Then one cannot compare the integrals of f1 and f2 by

comparing by their inner/outer measure ranges, which are [0, 1] and [0, 2] respectively. How-

ever, the hypomeasures approach allows us to unhesitatingly assert that the “integral” of f1

is no greater than the “integral” of f2, regardless of what the masses of currently unknown

sets turn out to be.

The hypomeasures approach greatly simplifies our work by allowing us to treat every

function as measurable.3 Measurability only becomes relevant to follow-up questions regard-

ing the range of a hypomeasure. If the σ-field generated by f is a subset of the γ-completion

of the domain of γ, then the γ-hypomeasure of f is constant, being everywhere equal to

2. Our notation is intended to resemble (and extend) the de Finetti notation for integrals.

3. The hypomeasure idea is fairly straight-forward and has likely been discussed before somewhere.
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the ordinary measure of f according to the completion of γ. Measurability of f by the

completion of γ is necessary and sufficient for this constancy when γ is a finite measure

[Halmos, 1974, Thm 14.F].

Another follow-up question is perhaps concerning: do there exist any extensions of γ

that can measure f? If so, we will call f compatible with γ. Incompatibility is possible;

indeed, assuming Zorn’s Lemma, no atomless measure can exist on a power set [Troitskii,

1994, Theorem 5]. Even a countable collection of sets has been devised that is incom-

patible with Lebesgue measure, assuming the continuum hypothesis [Bogachev, 2007, Cor

3.10.3].4 However, such pathological functions are unusual in practice, so we suggest that

a “presumption of innocence” is sensible. Furthermore, realize that there is nothing math-

ematically illegitimate about incompatible cases; they produce identities and inequalities

that are vacuously true “point-wise” as there are not any points to check.5

When convenient, one can instruct the reader to interpret “integrals” as hypomeasures.

In this way, identities and inequalities proven are mathematically legitimate regardless of

measurability, and they are also realistically meaningful except in the pathological cases of

incompatibility.

4. To clarify, the Vitali sets are not the example that we are referring to. It is easy to extend Lebesgue
measure to include the Vitali sets, as they are disjoint [Bogachev, 2007, Thm 1.12.5]. The significance of
the Vitali sets was that they demonstrated that there is no translation-invariant extension.

5. Careful not to be misled, though. Consider [Mattner, 1999, Sec 2.2] in which a non-negative integrand
produces different results depending on the order of integration. Recall that Tonelli’s Theorem requires
product-measurability, which fails in Mattner’s example. We can conclude that there is no extension of the
measure for which the integrand is measurable; otherwise, Tonelli would apply and the iterated integrals
would be valid. Thus, this is a case in which the hypomeasure has an empty domain.
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