
Exercise 1.3 Show that the span of v1, . . . ,vm is a subspace.

Solution. Consider two vectors in the span, say
[
v1 · · · vm

]
b1 and

[
v1 · · · vm

]
b2. For a pair of scalars

a1, a2 the linear combination

a1

[
v1 · · · vm

]
b1 + a2

[
v1 · · · vm

]
b2 =

[
v1 · · · vm

]
(a1b1 + a2b2)

is also in the span, so the span satisfies the definition of a subspace.

Exercise 1.6 Prove that the null space of T is a subspace.

Solution. Let b1 and b2 be in the null space. Given any scalars a1, a2, consider the vector of scalars a1b1 + a2b2.

T(a1b1 + a2b2) = a1 Tb1︸︷︷︸
0

+a2 Tb2︸︷︷︸
0

= 0

Since a1b1 + a2b2 is also mapped to 0, it’s in the null space as well; the null space therefore satisfies the definition
of a subspace.

Exercise 1.9 Let z be in the null space of
[
v1 · · · vm

]
. Given any vector of scalars b, show that the linear

combination of v1, . . . ,vm produced by the entries of b + z is exactly the same as that produced by b.

Solution. With z in the null space, the b + z linear combination results in[
v1 · · · vm

]
(b + z) =

[
v1 · · · vm

]
b +

[
v1 · · · vm

]
z︸ ︷︷ ︸

0

=
[
v1 · · · vm

]
b.

Exercise 1.17 Let F be a field. Find the dimension of Fm as defined in Section 1.2.

Solution. Consider the n vectors e1 := (1, 0, . . . , 0), . . . , em := (0, . . . , 0, 1). A given vector (c1, . . . , cm) ∈ Fm
has the unique representation c1e1 + . . .+ cmem with respect to these vectors, so they comprise a basis (known as
the *standard basis*). This tells us that the dimension of Fm is m.

Exercise 1.18 Suppose
[
v1 · · · vm

]
and

[
w1 · · · wm

]
have the exact same behavior on a basis B =

{b1, . . . ,bm} for the vector space of scalar coefficients, that is,
[
v1 · · · vm

]
bj =

[
w1 · · · wm

]
bj for ev-

ery j ∈ {1, . . . ,m}. Show that vj must equal wj for every j ∈ {1, . . . ,m}.

Solution. We’ll first show that
[
v1 · · · vm

]
and

[
w1 · · · wm

]
must have the exact same behavior on ev-

ery vector in Fm (where F is the scalar field) by representing an arbitrary vector x with respect to U . Letting
x = a1b1 + . . .+ ambm,[

v1 · · · vm
]
x =

[
v1 · · · vm

]
(a1b1 + . . .+ ambm)

= a1

[
v1 · · · vm

]
b1 + . . .+ am

[
v1 · · · vm

]
bm

= a1

[
w1 · · · wm

]
b1 + . . .+ am

[
w1 · · · wm

]
bm

=
[
w1 · · · wm

]
(a1b1 + . . .+ ambm)

=
[
w1 · · · wm

]
x.

In particular, the fact that
[
v1 · · · vm

]
and

[
w1 · · · wm

]
map (1, 0, . . . , 0) to the same vector means that v1

must equal w1. Such an argument holds for every *column* in turn.



Exercise 1.19 Let λ be an eigenvalue for T. Show that the *eigenspace* of λ is a *subspace*.

Solution. Suppose that q1 and q2 are both in the eigenspace. For any scalars a1, a2,

T(a1q1 + a2q2) = a1Tq1 + a2Tq2

= a1λq1 + a2λq2

= λ(a1q1 + a2q2)

which confirms that a1q1 + a2q2 is also an eigenvector for T with eigenvalue λ.

Exercise 1.20 Suppose T has eigenvalues λ1, . . . , λm with corresponding eigenvectors q1, . . . ,qm. Let a be a non-
zero scalar. Identify eigenvalues and eigenvectors of aT, i.e. the function that maps any vector v to a times Tv.

Solution. Consider the action of aT on qj .

[aT](qj) = a(Tqj)

= aλjqj

So q1, . . . ,qm remain eigenvectors, and their eigenvalues are aλ1, . . . , aλm. Furthermore, no additional eigenvectors
for aT are introduced because clearly they would also have been eigenvectors for T.

Exercise 1.21 Explain why any linear operator that has 0 as an eigenvalue doesn’t have an inverse function.

Solution. The corresponding eigenspace is a subspace (with dimension at least 1) that the linear operator maps to
0. Because it maps multiple elements of its domain to the same value, it can’t be invertible.

Exercise 1.24 Let T be a linear operator that has non-zero eigenvalues λ1, . . . , λn with eigenvectors q1, . . . ,qn.
Suppose T is invertible. Show that T−1 also has q1, . . . ,qn as eigenvectors, and find the corresponding eigenvalues.

Solution. Consider the behavior of the inverse on qj . We know that the inverse is supposed to undo the be-
havior of T, so T−1Tqj should equal qj .

T−1Tqj = T−1(λjqj)

= λjT−1qj

For λjT−1qj to equal qj , we can see that qj must be an eigenvector of T−1 with eigenvalue 1/λj . Thus T−1 has
eigenvalues 1/λ1, . . . , 1/λn with eigenvectors q1, . . . ,qn.

Exercise 1.27 Show that if y is orthogonal to every one of v1, . . . ,vm, then it is also orthogonal to every vector
in their span.

Solution. Let b1v1 + . . . bmvm represent an arbitrary vector in the span. By linearity of inner products, its
inner product with y is

〈b1v1 + . . . bmvm,y〉 = b1 〈v1,y〉︸ ︷︷ ︸
0

+ . . .+ bm 〈vm,y〉︸ ︷︷ ︸
0

= 0

because y is orthogonal to each of the basis vectors.



Exercise 1.31 Justify the Pythagorean identity extended to m orthogonal vectors v1, . . . ,vm:

‖v1 + . . .+ vm‖2 = ‖v1‖2 + . . .+ ‖vm‖2.

Solution. v1 is orthogonal to v2 + . . .+ vm, so by the Pythagorean identity

‖v1 + . . .+ vm‖2 = ‖v1‖2 + ‖v2 + . . .+ vm‖2.

This logic can be applied repeatedly to bring out one vector at a time leading to the desired result. (For a more
formal argument, one can invoke *induction*.)

Exercise 1.32 Given a non-zero vector v, find the norm of 1
‖v‖v.

Solution. Using Exercise 1.28 and the fact that norms are non-negative,∥∥∥ 1
‖v‖v

∥∥∥ = 1
‖v‖‖v‖

= 1.

Exercise 1.33 Given a unit vector u, find a unique representation of the vector y as the sum of a vector in the
span of u and a vector orthogonal to the span of u.

Solution. We’ll explicitly construct the desired vector in the span of u. The vector we seek must equal b̂u for
some scalar b̂ . Based on the trivial identity y = b̂u + (y − b̂u), we see that we need the second vector y − b̂u to
be orthogonal to u. Its inner product with u is

〈y − b̂u,u〉 = 〈y,u〉 − b̂ 〈u,u〉︸ ︷︷ ︸
‖u‖2=1

which is zero precisely when b̂ = 〈y,u〉. Therefore, y can be represented as the sum of 〈y,u〉u which is in the span
of u and (y − 〈y,u〉u) which is orthogonal to the span of u.

Exercise 1.34 Given a non-zero vector v, find a unique representation of the vector y as the sum of a vector in
the span of v and a vector orthogonal to the span of v.

Solution. A vector is in the span of v if and only if it’s in the span of the unit vector v
‖v‖ . Likewise, a vector

is orthogonal to the span of v if and only if it’s orthogonal to the unit vector v
‖v‖ . Based on our solution to Exercise

1.33 the part in the span of v must be 〈
y,

v

‖v‖

〉
v

‖v‖
=
〈y,v〉
‖v‖2

v.

Thus the desired representation of y is

y =
〈y,v〉
‖v‖2

v︸ ︷︷ ︸
∈span{v}

+

(
y − 〈y,v〉

‖v‖2
v

)
︸ ︷︷ ︸
⊥span{v}

.



Exercise 1.35 Let {u1, . . . ,um} be an orthonormal basis for V. Find a unique representation of y ∈ V as a linear
combination of the basis vectors.

Solution. The correct coefficients can be readily determined thanks to the orthogonality of the terms:

y = b̂1u1︸︷︷︸
∈span{u1}

+ b̂2u2 + . . .+ b̂mum︸ ︷︷ ︸
⊥span{u1}

.

By comparison to Exercise 1.33, the first term has to be 〈y,u1〉u1, so its coefficient has to be b̂1 = 〈y,u1〉. By
reasoning similarly for each of the basis vectors, we conclude that y must have the unique representation

y = 〈y,u1〉u1 + . . .+ 〈y,um〉um.

Exercise 1.36 Let {u1, . . . ,um} be an orthonormal basis for a real vector space V. Show that the inner product
between x and y equals the sum of the product of their squared coordinates with respect to u1, . . . ,um:

〈x,y〉 =
∑
i

(〈x,ui〉〈y,ui〉).

Solution. We’ll use the orthonormal basis representation (Exercise 1.35) to expand y use linearity of inner products.

〈x,y〉 = 〈x, 〈y,u1〉u1 + . . .+ 〈y,um〉um〉
= 〈x, 〈y,u1〉u1〉+ . . .+ 〈x, 〈y,um〉um〉
= 〈y,u1〉〈x,u1〉+ . . .+ 〈y,um〉〈x,um〉.

Exercise 1.37 Let {u1, . . . ,um} be an orthonormal basis for a real vector space V, and let y ∈ V. Consider the
*approximation* ŷ := 〈y,u1〉u1 + . . . + 〈y,uk〉uk with k ≤ m. Use Parseval’s identity to derive a simple formula
for the squared norm of y − ŷ, which we might call the *squared approximation error*.

Solution. Representing y with respect to the orthonormal basis, we find that the difference between the vectors is

y − ŷ = (〈y,u1〉u1 + . . .+ 〈y,um〉um)− (〈y,u1〉u1 + . . .+ 〈y,uk〉uk)

= 〈y,uk+1〉uk+1 + . . .+ 〈y,um〉um.

Its squared norm is the sum of its squared coordinates, so

‖y − ŷ‖2 = 〈y,uk+1〉2 + . . .+ 〈y,um〉2.

Exercise 1.38 Let {u1, . . . ,um} be an orthonormal basis for a real vector space V, and let y ∈ V. Explain which
term in the representation 〈y,u1〉u1 + . . . + 〈y,um〉um best approximates y in the sense that it results in the
smallest approximation error ‖y − 〈y,uj〉uj‖.

Solution. Based on Exercise 1.37, the squared approximation error ‖y − 〈y,uj〉uj‖2 is equal to the sum of the
squares of the other coefficients

∑
i6=j〈y,ui〉2. Therefore, the approximation error is minimized if we use the term

with the largest squared coefficient.



Exercise 1.39 Given a subspace S, show that S⊥ is also a subspace.

Solution. Let v1,v2 ∈ S⊥, and let b1 and b2 be scalars. We need to show that the linear combination b1v1 + b2v2

is also in S⊥. Letting w be an arbitrary vector in S,

〈b1v1 + b2v2,w〉 = b1 〈v1,w〉︸ ︷︷ ︸
0

+b2 〈v2,w〉︸ ︷︷ ︸
0

= 0.

Exercise 1.40 Let ŷ be the orthogonal projection of y onto S. Use the Pythagorean identity to show that the
vector in S that is closest to y is ŷ.

Solution. Let v be an arbitrary vector in S. Realizing that ŷ − v is in S and that y − ŷ is orthogonal to S,
we observe a right triangle (Figure 1.3) with sides y − v, ŷ − v, and y − ŷ. By the Pythagorean identity,

‖y − v‖2 = ‖y − ŷ‖2 + ‖ŷ − v‖2.

The first term on the right doesn’t depend on the choice of v, so the quantity is uniquely minimized by choosing v
equal to ŷ to make the second term zero.

Exercise 1.41 Let S1 and S2 be subspaces that are orthogonal to each other, and let S be the span of their union.
If ŷ1 and ŷ2 are the orthogonal projections of y onto S1 and S2, show that the orthogonal projection of y onto S
is ŷ1 + ŷ2.

Solution. For an arbitrary v ∈ S, we need to establish that

y − (ŷ1 + ŷ2) ⊥ v.

Every vector in the span of S1 ∪S2 can be represented as the sum of a vector in S1 and a vector in S2. Making use
of this fact, we let v = v1 + v2 with v1 ∈ S1 and v2 ∈ S2.

〈v,y − (ŷ1 + ŷ2)〉 = 〈v1 + v2,y − ŷ1 − ŷ2〉
= 〈v1,y − ŷ1 − ŷ2〉+ 〈v2,y − ŷ1 − ŷ2〉
= 〈v1,y − ŷ1〉︸ ︷︷ ︸

0

+ 〈v2,y − ŷ2〉︸ ︷︷ ︸
0

= 0

Exercise 1.42 Let S be a subspace of V, and let u1, . . . ,um comprise an orthonormal basis for S. Given any
y ∈ V, show that ŷ := 〈y,u1〉u1 + . . .+ 〈y,um〉um is the orthogonal projection of y onto S.

Solution. From Exercise 1.41, we understand that the orthogonal projection of onto S equals the sum of its
orthogonal projections onto the spans of the orthonormal basis vectors. The representations of these orthogonal
projections as 〈y,u1〉u1, . . . , 〈y,um〉um comes from Exercise 1.33.



Exercise 1.43 Suppose ŷ1 and ŷ2 are the orthogonal projections of y1 and y2 onto S. With scalars a1 and a2,
find the orthogonal projection of a1y1 + a2y2 onto S.

Solution. We can write out each vector in terms of its orthogonal projections onto S and S⊥, then regroup
the terms.

a1y1 + a2y2 = a1[ŷ1 + (y1 − ŷ1)] + a2[ŷ2 + (y2 − ŷ2)]

= (a1ŷ1 + a2ŷ2)︸ ︷︷ ︸
∈S

+ [a1(y1 − ŷ1) + a2(y2 − ŷ2)]︸ ︷︷ ︸
⊥S

This shows that a1ŷ1 + a2ŷ2 is the orthogonal projection of a1y1 + a2y2 onto S. In other words, the orthogonal
projection of a linear combination is the linear combination of the orthogonal projections.

Exercise 1.44 Let ŷ be the orthogonal projection of y onto S. How do we know that y − ŷ is the orthogonal
projection of y onto S⊥?

Solution. We know that y = ŷ + (y − ŷ) with ŷ ∈ S and y − ŷ ∈ S⊥ by definition of orthogonal projection.
Of course, by definition of orthogonal complement, ŷ ⊥ S⊥, so that same representation shows that y − ŷ is the
orthogonal projection of y onto S⊥.

Exercise 1.46 Let H be an orthogonal projection operator onto S. Show that every vector in S is an eigenvector
of H.

Solution. If v is in S, then clearly v = v + 0 is the unique representation of v as the sum of a vector in S
and a vector orthogonal to S. Therefore Hv = v, which means that v is an eigenvector with eigenvalue 1.

Exercise 1.47 Let H be the orthogonal projection operator onto S. Show that every vector in S⊥ is an eigenvector
of H.

Solution. If v ⊥ S, then clearly v = 0 + v is the unique representation of v as the sum of a vector in S and
a vector orthogonal to S. Therefore Hv = 0, which means that v is an eigenvector with eigenvalue 0.

Exercise 1.48 Show that every orthogonal projection operator is idempotent.

Solution. Let H be the orthogonal projection operator onto S, and let ŷ be the orthogonal projection of y onto S.
Because ŷ is in S, H maps it to itself.

[H ◦H]y = H(Hy)

= Hŷ

= ŷ

The action of H ◦H is exactly the same as that of H on every vector, so they’re the same operator.

Exercise 1.54 Show that MTM is symmetric.

Solution. The transpose of a product of matrices is equal to the product of their transposes multiplied in the
reverse order (Exercise 1.52). Thus

(MTM)T = (M)T (MT )T

= MTM.



Exercise 1.57 Let q1, . . . ,qn be an orthonormal basis for RRRn. Show that M has the *spectral decomposition*

M = λ1q1q
T
1 + . . .+ λnqnqTn

if and only if q1, . . . ,qn are eigenvectors for M with eigenvalues λ1, . . . , λn.

Solution. Let’s figure out the behavior of λ1q1q
T
1 + . . .+ λnqnqTn on the basis vectors.

(λ1q1q
T
1 + . . .+ λnqnqTn )q1 = λ1q1 qT1 q1︸ ︷︷ ︸

‖q1‖2=1

+ . . .+ λnqn qTnq1︸ ︷︷ ︸
0

= λ1q1

meaning q1 is also an eigenvector of this matrix with eigenvalue λ1. Likewise for q2, . . . ,qn. By establishing that
M and λ1q1q

T
1 + . . .+ λnqnqTn behave the same on a basis, we see that they must be the same matrix by Exercise

1.18.

Exercise 1.58 Let M ∈ RRRn×n be a symmetric matrix with non-negative eigenvalues λ1, . . . , λn and corresponding
orthonormal eigenvectors q1, . . . ,qn. Show that the symmetric matrix that has eigenvalues

√
λ1, . . . ,

√
λn with

eigenvectors q1, . . . ,qn is the *square root* of M (denoted M1/2) in the sense that M1/2M1/2 = M.

Solution. Using a spectral decomposition, we multiply the proposed square root matrix by itself:

M1/2M1/2 = M1/2(
√
λ1q1q

T
1 + . . .+

√
λnqnqTn )

=
√
λ1 M1/2q1︸ ︷︷ ︸

√
λ1q1

qT1 + . . .+
√
λnM1/2qn︸ ︷︷ ︸

√
λnqn

qTn

= λ1q1q
T
1 + . . .+ λnqnqTn

= M.

Exercise 1.59 Let M be a symmetric and invertible real matrix. Show that M−1 is also a symmetric real matrix.

Solution. Let λ1, . . . , λn and q1, . . . ,qn be eigenvalues and orthonormal eigenvectors of M. Based on Exercise
1.24, we can deduce that M−1 has the spectral decomposition

M−1 = 1
λ1

q1q
T
1 + . . .+ 1

λn
qnqTn .

Because M−1 is a linear combination of symmetric real matrices (see Exercise 1.54), it’s clearly a symmetric real
matrix as well.

Exercise 1.60 Let M be a symmetric real matrix. Show that the trace of M equals the sum of its eigenvalues.

Solution. We’ll use the matrix form of spectral decomposition M = Q�QT and the *cyclic permutation* prop-
erty of trace (Exercise 1.51).

trM = tr (Q�QT )

= tr (QTQ︸ ︷︷ ︸
In

�)

= tr�



Exercise 1.61 Let M be an n ×m real matrix. How do you know that the number of terms in a singular value
decomposition of M can’t be more than min(n,m).

Solution. The vectors u1, . . . ,ud ∈ RRRn are linearly independent, so there can’t be more than n of them. Like-
wise, the vectors v1, . . . ,vd ∈ RRRm are linearly independent, so there can’t be more than m of them.

Exercise 1.62 Use a singular value decomposition for M ∈ RRRn×m to find a spectral decomposition of MTM.

Solution. Writing M = USVT ,

MTM = (USVT )T (USVT )

= VST UTU︸ ︷︷ ︸
I

SVT

= VS2VT .

By comparison to the matrix form of spectral decomposition, we see that MTM has eigenvalues equal to the squares
of the singular values of M, and the corresponding eigenvectors are the columns of V.

Exercise 1.66 Provide a formula for the matrix that maps y to its orthogonal projection onto the span of the unit
vector u ∈ RRRn.

Solution. The orthogonal projection of y onto the span of u is 〈y,u〉u. By rewriting this as uuTy, we realize
that the matrix uuT maps any vector to its orthogonal projection onto the span of u.

Exercise 1.67 Show that the trace of an orthogonal projection matrix equals the dimension of the subspace that
it projects onto.

Solution. From Exercise 1.60, we know that the trace of H equals the sum of its eigenvalues λ1, . . . , λn. Fur-
thermore, because it’s is an orthogonal projection matrix, we know that it yields the spectral decomposition

H = (1)q1q
T
1 + . . .+ (1)qmqTm + (0)qm+1q

T
m+1 + . . .+ (0)qnqTn

where q1, . . . ,qm are in the subspace that H projects onto and the rest are necessarily orthogonal to it. We see m
terms with the eigenvalue 1 and the remaining terms with the eigenvalue 0, so their sum is m which is the dimension
of the subspace that H projects onto.

Exercise 1.68 Let M be a matrix. Explain why the rank of the orthogonal projection matrix onto C(M) must be
exactly the same as the rank of M.

Solution. The equality of ranks follows from the stronger observation that the orthogonal projection matrix must
have the exact same column space as M. Every vector in C(M) gets mapped to itself by the orthogonal projection
matrix, so its column space is at least as large as C(M). However, the orthogonal projection of any vector onto
C(M) must by definition be in C(M), so the orthogonal projection matrix cannot map any vector to a result outside
of C(M).



Exercise 1.69 Let M ∈ RRRn×m and y ∈ RRRn. Explain why the *Normal equation*

MTMb̂ = MTy

is satisfied by the coefficient vector b̂ ∈ RRRm if and only if Mb̂ is the orthogonal projection of y onto C(M).

Solution. The orthogonal projection Mb̂ is the unique vector in C(M) with the property that y −Mb̂ ⊥ C(M).
It is equivalent to check that y −Mb̂ is orthogonal to every column v1, . . . ,vm of M. Equivalently the following
quantity should be equal to the zero vector:

MT (y −Mb̂) =

− v1 −
...

− vm −

 (y −Mb̂)

=

vT1 (y −Mb̂)
...

vTm(y −Mb̂)

 .
Setting this vector MT (y −Mb̂) equal to the zero vector results in the Normal equation.

Exercise 1.70 Suppose M ∈ RRRn×m has linearly independent columns. Provide a formula for the coefficient vector
b̂ for which Mb̂ equals the orthogonal projection of y ∈ RRRn onto C(M).

Solution. Because the columns are linearly independent, we know that MTM is invertible and thus the Normal
equation

MTMb̂ = MTy

is uniquely solved by b̂ = (MTM)−1MTy.

Exercise 1.71 Suppose M ∈ RRRn×m has linearly independent columns. Provide a formula for the orthogonal pro-
jection matrix onto C(M).

Solution. We’ve already derived in Exercise 1.70 a formula for the desired coefficient vector b̂ = (MTM)−1MTy, so
we simply plug this into Mb̂ to find the orthogonal projection of y onto C(M).

ŷ = Mb̂

= M(MTM)−1MTy

Therefore, we see that y is mapped to its orthogonal projection onto C(M) by the matrix M(MTM)−1MT .

Exercise 1.76 For a unit vector u, express the quadratic form uTMu as a weighted average of the eigenvalues of
M ∈ RRRn×n.

Solution. Let q1, . . . ,qn be an orthonormal basis of eigenvectors for M with eigenvalues λ1, . . . , λn. We can
represent u with respect to the eigenvector basis as 〈u,q1〉q1 + . . .+ 〈u,qn〉qn.

uTMu = uTM(〈u,q1〉q1 + . . .+ 〈u,qn〉qn)

= uT (〈u,q1〉Mq1︸︷︷︸
λ1q1

+ . . .+ 〈u,qn〉Mqn︸ ︷︷ ︸
λnqn

)

= 〈u,q1〉2λ1 + . . .+ 〈u,qn〉2λn
〈u,q1〉, . . . , 〈u,qn〉 provide the coordinates of u with respect to the basis q1, . . . ,qn. Because u is a unit vector, the
sum of these squared coordinates has to be 1. Additionally, the squared coordinates are non-negative. Consequently,
we’ve expressed uTMu as a weighted average of the eigenvalues; the weights are the squared coordinates of u with
respect to the eigenvector basis.



Exercise 1.77 Identify a unit vector u that maximizes the quadratic form uTMu.

Solution. From Exercise 1.76, we know that the quadratic form equals a weighted average of the eigenvalues.
This weighted average is maximized by placing all of the weight on the largest eigenvalue, that is, by letting u be
a principal eigenvector. Such a choice of u makes uTMu equal to the largest eigenvalue.

Exercise 1.78 Given any real matrix M, show that MTM is positive semi-definite.

Solution. Exercise 1.54 established that the matrix in question is symmetric. The quadratic form

vT (MTM)v = (vTMT )(Mv)

= (Mv)T (Mv)

equals the squared norm of the vector Mv which is non-negative.

Exercise 1.79 Let M be a symmetric real matrix. Show that M is positive semi-definite if and only if its eigenvalues
are all non-negative.

Solution. From our work in Exercise 1.77, we’ve seen how to express the quadratic form as a linear combina-
tion of the eigenvalues

vTMv = 〈v,q1〉2λ1 + . . .+ 〈v,qn〉2λn.

If every eigenvalue is at least zero, then every term in this sum is non-negative so the quadratic form must be
non-negative. Conversely, if λj is negative, then the quadratic form arising from v = qj is negative, as it equals
λj .

Exercise 1.80 Let H ∈ RRRn×n be an orthogonal projection matrix, and let v ∈ RRRn. Show that the squared length
of Hv equals the quadratic form vTHv.

Solution. Because H is symmetric and idempotent,

‖Hv‖2 = (Hv)T (Hv)

= vTHTHv

= vTHv.

Exercise 1.81 Let x1, . . . ,xn be the rows of a real matrix X. Show that the quadratic form uT ( 1
nX

TX)u is equal
to the average of the squares of the coefficients of x1, . . . ,xn with respect to u.

Solution. We’ll first express the quadratic form in terms of the squared norm of a vector.

uT ( 1
nX

TX)u = 1
n (Xu)T (Xu)

= 1
n‖Xu‖2

The entries of the vector Xu are the coefficients of x1, . . . ,xn with respect to u. Its squared norm is the sum of its
squared entries, so 1

n‖Xu‖2 is the average of the squared coefficients.



Exercise 1.82 Let x1, . . . ,xn be the rows of the matrix X. Show that 1
nX

TX is the matrix whose (j, k)-entry is
the average of the product of the jth and kth coordinates of the vectors x1, . . . ,xn.

Solution. The product of the matrices

XTX =

 | |
x1 · · · xn
| |


− x1 −

...
− xn −


has as its (j, k)-entry the inner product of the jth row of XT and the kth column of X. With xi,j denoting the jth
coordinate of xi, this inner product equals

∑
i xi,jxi,k. When multiplied by 1/n, this entry is indeed the average of

the products of the coordinates. By thinking about summing over the observations, 1
nX

TX can also be understood
as an average of rank-1 matrices 1

nxix
T
i .

Exercise 1.83 Let x1, . . . ,xn be the rows of a real matrix X. Show that the average squared length 1
n

∑
i ‖xi‖2

equals the sum of the eigenvalues of 1
nX

TX.

Solution. By Parseval’s identity, the squared norm equals the sum of the squared coordinates using any basis;
let’s consider the orthonormal eigenvectors q1, . . . ,qm of 1

nX
TX, with λ1, . . . , λm denoting their eigenvalues. Recall

that Exercise 1.81 allows us to rewrite the average of squared coefficients as a quadratic form.

1
n

∑
i

‖xi‖2 = 1
n

∑
i

(〈xi,q1〉2 + . . .+ 〈xi,qm〉2)

= 1
n

∑
i

〈xi,q1〉2 + . . .+ 1
n

∑
i

〈xi,qm〉2

= qT1 ( 1
nX

TX)q1︸ ︷︷ ︸
λ1

+ . . .+ qTm( 1
nX

TX)qm︸ ︷︷ ︸
λm

Exercise 1.76 demonstrated that a quadratic form evaluated at a unit eigenvector equals the corresponding eigen-
value.

Exercise 2.1 Show that the entries of v = (v1, . . . , vn) have mean zero if and only if v is orthogonal to 1 = (1, . . . , 1).

Solution. The average of the entries is proportional to the inner product of v with 1.

1
n

∑
i

vi = 1
n 〈v,1〉

So the average is zero if and only if the inner product is zero.

Exercise 2.2 Use the Pythagorean identity to decompose the average of the squared differences between the re-
sponse values and a ∈ RRR, that is 1

n

∑
i(yi− a)2, into two terms, one of which is the empirical variance of y1, . . . , yn.

Solution. We can write
∑
i(y1 − a)2 as the squared norm ‖y − a1‖2. The vector y − a1 is the hypotenuse of

the right triangle whose other two sides are y − ȳ1 and ȳ1− a1. By the Pythagorean identity,

1
n

∑
i

(yi − a)2 = 1
n‖y − a1‖

2

= 1
n [‖y − ȳ1‖2 + ‖ȳ1− a1‖2]

= 1
n

[∑
i

(yi − ȳ)2 + n(ȳ − a)2

]
= 1

n

∑
i

(yi − ȳ)2 + (ȳ − a)2.



Exercise 2.3 Is it possible for the *least-squares line*’s sum of squared residuals to be greater than the *least-
squares point*’s sum of squared residuals?

Solution. The set of possible prediction functions corresponding to lines {f(x) = a + bx : a, b ∈ RRR} is strictly
larger than the set of possible prediction functions corresponding to points {f(x) = a : a ∈ RRR}. A line predicts
every response value by the same number if its slope is zero. By definition, the least-squares line will use a slope
of zero if and only if that leads to the smallest possible sum of squared residuals, in which case its sum of squared
residuals would be equal to that of the least-squares point.

Exercise 2.4 The variables picture provides us with a more specific answer to the question posed in Exercise 2.3.
Use the Pythagorean identity to quantify the difference between the least-squares point’s sum of squared residuals
and the least-squares line’s sum of squared residuals.

Solution. Because ȳ1 is in the span of 1 and x, we see that the least-squares line’s residual vector y − ŷ must be
orthogonal to ŷ − ȳ1. Invoking the Pythagorean identity,

‖y − ȳ1‖2 = ‖ŷ − ȳ1‖2 + ‖y − ŷ‖2.

The least-squares point’s sum of squared residuals is larger than the least-squares line’s sum of squared residuals
by ‖ŷ − ȳ1‖2.

Exercise 2.6 Let y ∈ RRRn be a response variable and x ∈ RRRn be an explanatory variable. Consider fitting the
response variable using quadratic functions of the explanatory variable:

{fa,b,c(x) = a+ bx+ cx2 : a, b, c ∈ RRR}.

Show that the set of possible prediction vectors is a subspace of RRRn.

Solution. Let fa,b,c(x) denote the vector of predictions (fa,b,c(x1), . . . , fa,b,c(xn)). With x2 representing the vector
of squared explanatory values, an arbitrary linear combination of two arbitrary vectors of predicted values is

α1fa1,b1,c1(x) + α2fa2,b2,c2(x) = α1(a11 + b1x + c1x
2) + α2(a21 + b2x + c2x

2)

= (α1a1 + α2a2)1 + (α1b1 + α2b2)x + (α1c1 + α2c2)x2

= fα1a1+α2a2,α1b1+α2b2,α1c1+α2c2(x)

which is another possible vector of predicted values that can be achieved using a quadratic function. In fact, we
can see that the set of possible predictions is exactly the span of 1, x, and x2.

Exercise 2.7 Let y ∈ RRRn be a response variable vector and x ∈ RRRn be an explanatory variable vector. Consider
predicting the response variable by using quadratic functions of the explanatory variable:

{fa,b,c(x) = a+ bx+ cx2 : a, b, c ∈ RRR}.

Explain how to find the coefficients (â, b̂, ĉ) of the quadratic function that minimizes the sum of squared residuals.

Solution. With x2 representing the vector of squared explanatory values, we can use the design matrix

M :=

 | | |
1 x x2

| | |

 .
According to Theorem 2.4, the least-squares coefficients are (â, b̂, ĉ) = (MTM)−MTy.



Exercise 2.8 Let ŷ be the orthogonal projection of y onto C(M). Explain why (MTM)−MT ŷ must be equal to
(MTM)−MTy.

Solution. There’s an intuitive explanation for this. You can think of (MTM)−MT as the matrix that maps any
vector in RRRn to the (minimum norm) coefficients of the columns of M that lead to the orthogonal projection of
that vector onto C(M). Because the orthogonal projection of ŷ onto C(M) is exactly the same as the orthogonal
projection of y onto C(M) (namely, both are ŷ), the coefficients leading to this orthogonal projection must be the
same.

Exercise 2.9 Suppose ŷ is the orthogonal projection of y onto S, y̌ is the orthogonal projection of y onto S0 ⊆ S,
and that 1 ∈ S0. Explain why

‖ŷ − ȳ1‖2 = ‖y̌ − ȳ1‖2 + ‖ŷ − y̌‖2.

Solution. The vector y̌ is defined to be the orthogonal projection of y onto S0. However, it’s also the orthogonal
projection of ŷ onto S0 because according to Exercise 1.50, orthogonal projection onto S followed by orthogonal
projection onto S0 lands you at the exact same vector that a single orthogonal projection onto S0 does. Likewise, ȳ1
is the orthogonal projection of y̌ onto 1. Invoke the ANOVA decomposition with ŷ playing the role of the response
variable.

Exercise 3.6 Let X be a random vector and v be a non-random vector. Explain why E(X + v) = EX + v.

Solution. The random vector X + v maps any ω to X(ω) + v; we’re justified in treating v as if it’s the ran-
dom vector that maps every element of the sample space to the vector v. By property (iii), E(X + v) = EX + Ev,
and by Exercise 3.5, Ev = v.

Exercise 3.7 Suppose EX = 0. Show that the coordinate of X with respect to u has expectation 0.

Solution.

E〈X,u〉 = 〈EX︸︷︷︸
0

,u〉

= 0

Exercise 3.8 Let X be a random vector that maps to a real vector space with an inner product. Show that the
expected squared length of X equals sum of the expected squares of its coordinates with respect to any orthonormal
basis u1, . . . ,um.

Solution. This is a simple consequence of Parseval’s identity.

E‖X‖2 = E[〈X,u1〉2 + . . .+ 〈X,um〉2]

= E〈X,u1〉2 + . . .+ E〈X,um〉2



Exercise 3.9 Let X = (X1, . . . , Xn) be a random vector, v = (v1, . . . , vn) be a non-random vector, and M be an
n×m matrix. Show that

E(v + MX) = v + MEX.

Solution. From Exercise 3.6, E(v + MX) = v + EMX. Let m1, . . . ,mn be the rows of M. Putting the expectation
into each coordinate of the vector,

EMX = E

mT
1 X
...

mT
nX


=

EmT
1 X
...

EmT
nX


=

mT
1 EX
...

mT
nEX


= MEX.

Exercise 3.10 Suppose X is a discrete random vector with probability mass function p on {x1, . . . ,xn}. Show that
EX =

∑
i xip(xi).

Solution. The random vector can be represented by the sum

X(ω) = x11X(ω)=x1
+ . . .+ xn1X(ω)=xn

Taking the expectation,

EX = E[x11X=x1
+ . . .+ xn1X=xn ]

= x1 E1X=x1︸ ︷︷ ︸
p(x1)

+ . . .+ xn E1X=xn︸ ︷︷ ︸
p(xn)

by property (i) of the definition of expectation.

Exercise 3.11 Let X be a discrete random variable whose possible values are the positive integers. In particular,
suppose that P{X = k} is proportional to 1/k2 for k ∈ {1, 2, . . .}. What’s the expectation of X?

Solution. Recall that
∑∞
k=1

1
k2 = π2/6, so this distribution is well-defined. However, its expectation is

EX =

∞∑
k=1

kP{X = k}

=

∞∑
k=1

k 6
π2

1
k2

= 6
π2

∞∑
k=1

1
k

=∞.



Exercise 3.15 Let Y be a random vector with expectation µ. Find the non-random vector v that minimizes
E‖Y − v‖2.

Solution. By the bias-variance decomposition, the objective function equals ‖v − µ‖2 + E‖Y − µ‖2. The sec-
ond term doesn’t depend on v, so we can minimize the sum by taking v to be µ which makes the first term
zero.

Exercise 3.16 Explain how Exercise 2.2 is an instance of the bias-variance decomposition.

Solution. If the distribution of the random variable Y is the empirical distribution defined by y = (y1, . . . , yn), then
its expectation is ȳ. By the bias-variance decomposition,

E(Y − a)2 = (a− EY )2 + E(Y − EY )2

m
1
n

∑
i

(yi − a)2 = (a− ȳ)2 + 1
n

∑
i

(yi − ȳ)2.

Exercise 3.17 Let Y be a random vector that is an *unbiased estimator* for θ, that is EY = θ. If λ ∈ RRR, express
‖E(λY)− θ‖2 (which can be thought of as the *squared bias* of the estimator λY) in terms of λ and ‖θ‖2.

Solution.

‖E(λY)− θ‖2 = ‖λ EY︸︷︷︸
θ

−θ‖2

= ‖(λ− 1)θ‖2

= (1− λ)2‖θ‖2

Note that the factor (λ− 1)2 is equal to (1− λ)2 which is a bit more intuitive when λ ∈ [0, 1].

Exercise 3.18 Let Y be a random vector, and let λ ∈ RRR. Express E‖λY−E(λY)‖2 in terms of λ and E‖Y−EY‖2.

Solution. Factoring out λ,

E‖λY − E(λY)‖2 = E‖λ(Y − EY)‖2

= λ2E‖Y − EY‖2.

Exercise 3.19 Let Y be a random vector that is an *unbiased estimator* for θ ∈ RRRn. Use the bias-variance
decomposition along with your results from Exercises 3.17 and 3.18 to find an expression for λ ∈ RRR (in terms of
‖θ‖2 and E‖Y − θ‖2) for which E‖θ − λY‖2 is as small as possible.

Solution. By the bias-variance decomposition and our previous results,

E‖θ − λY‖2 = ‖E(λY)− θ‖2 + E‖λY − E(λY)‖2

= (1− λ)2‖θ‖2 + λ2E‖Y − EY‖2.

Taking the derivative with respect to λ, and setting it to zero, we get the critical λ∗:

(1− λ∗)‖θ‖2 = λ∗E‖Y − EY‖2

is solved by λ∗ = ‖θ‖2
‖θ‖2+E‖Y−EY‖2 . Realize of course that when estimating an unknown parameter θ, we can’t

actually calculate this optimal value.



Exercise 3.22 Let Y be an RRRn-valued random vector, and let v ∈ RRRn. Use Exercise 3.21 to show that the covari-
ance of v + Y has the same covariance matrix as Y.

Solution.

cov (v + Y) = E[(v + Y − E(v + Y))(v + Y − E(v + Y))T ]

= E[(Y − EY)(Y − EY)T ]

= cov Y

Exercise 3.23 Let Y be a random vector with covariance matrix C. Let v be a non-random vector, and let M be
a real matrix. Show that the covariance of v + MY is MCMT .

Solution. By Exercise 3.22, cov (v + MY) = covMY.

covMY = E[(MY − EMY)(MY − EMY)T ]

= E[(MY −MEY)(MY −MEY)T ]

= E[(M(Y − EY))(M(Y − EY))T ]

= M(E[(Y − EY)(Y − EY)T ])MT

= MCMT

Exercise 3.24 Show that every covariance matrix is positive semi-definite.

Solution. To satisfy the definition, we need to show that every quadratic form is non-negative. We’ll use the
covariance expression from Exercise 3.21 and consider its quadratic form for an arbitrary vector v,

vTE[(Y − EY)(Y − EY)T ]v = E[vT (Y − EY)(Y − EY)T ]v

= E[vT (Y − EY)(Y − EY)Tv]

= E〈Y − EY,v〉2.

The expectation of a non-negative random variable has to be non-negative.

Exercise 3.25 Show that E‖X− EX‖2 = tr (cov X).

Solution.

E‖X− EX‖2 = E[(X1 − EX1)2 + . . .+ (Xn − EXn)2]

= E(X1 − EX1)2 + . . .+ E(Xn − EXn)2

These variances are the diagonals of the covariance matrix, so its trace is their sum.



Exercise 3.27 Let ε be a random vector with expectation 0 and covariance matrix σ2I. Let v be a non-random
vector, and let H be an orthogonal projection matrix. Find the covariance matrix of H(v + ε).

Solution. Distribute the matrix multiplication to get Hv + Hε. According to Exercise 3.23, the covariance is

H(σ2I)HT = σ2HHT

= σ2H

by symmetry and idempotence of orthogonal projection matrices.

Exercise 3.28 Let X have expectation µX and Y have expectation µY. Show that the expected inner product
between the centered vectors X − µX and Y − µY is the same as the expected inner product when only one of
them is centered.

Solution.

E〈X− µX,Y − µY〉 = E〈X− µX,Y〉 − E〈X− µX,µY〉
= E〈X− µX,Y〉 − 〈EX− µX︸ ︷︷ ︸

0

,µY〉

= E〈X− µX,Y〉

The same argument works for Y − µY if you keep Exercise 3.14 in mind.

Exercise 3.29 Use Exercise 3.28 to observe that

〈x− x̄1,y〉 = 〈x− x̄1,y − ȳ1〉.

Solution. Let the *joint* distribution of (X,Y ) be the empirical distribution of (x1, y1), . . . , (xn, yn).

〈x− x̄1,y〉 = n 1
n

∑
i

[(xi − x̄)yi]

= nE[(X − EX)Y ]

= nE[(X − EX)(Y − EY )]

= n 1
n

∑
i

[(xi − x̄)(yi − ȳ)]

= 〈x− x̄1,y − ȳ1〉

Exercise 3.30 Let X be a random vector mapping to a real vector space, and let v be a non-random vector. Show
that the variance of the coordinate of X with respect to u is the same as the variance of the coordinate of X + v
with respect to u.

Solution. The difference between 〈X + v,u〉 and 〈X,u〉 is 〈v,u〉 which is non-random. By Exercise 3.23, we
can conclude that they must therefore have the same variance.



Exercise 3.31 If X has expectation µ, find the expectation of the *centered* version X− µ.

Solution.

E(X− µ) = EX︸︷︷︸
µ

−µ

= 0

Exercise 3.32 Let M be a positive definite matrix. Based on Exercises 1.24 and 1.58, explain why the inverse of
the square root of M is the same as the square root of the inverse of M.

Solution. To find the square root of a positive semi-definite matrix, you replace the eigenvalues by their square
roots. To find the inverse of an invertible symmetric matrix, you replace the eigenvalues by their reciprocals. No
matter which order you do these two operations in, you end up with the same matrix:

1√
λ1

q1q
T
1 + . . .+

1√
λn

qnqTn

where q1, . . . ,qn are eigenvectors of M with eigenvalues λ1, . . . , λn.

Exercise 3.33 Let Y have expectation µ and covariance matrix C. Find the expectation and covariance of
C−1/2(Y − µ).

Solution. The random vector Y − µ has expectation zero, so based on Exercise 3.9, C−1/2(Y − µ) has expec-
tation C−1/20 = 0. For the covariance, we apply the formula from Exercise 3.23 to get

cov [C−1/2(Y − µ)] = C−1/2C(C−1/2)T

= C−1/2C1/2︸ ︷︷ ︸
I

C1/2C−1/2︸ ︷︷ ︸
I

= I.

Exercise 3.34 If Y has expectation µ and a positive definite covariance matrix C, find the expected squared
Mahalanobis distance from Y to its own distribution.

Solution. Let Z := C−1/2(Y − µ) represent the standardized version of Y, and let (Z1, . . . , Zn) represent its
coordinates. Notice that the squared Mahalanobis distance from Y to its distribution is exactly the squared norm
of the standardized version.

E‖C−1/2[Y − µ]‖2 = E‖Z‖2

= EZ2
1 + . . .+ EZ2

n

= varZ1︸ ︷︷ ︸
1

+ . . .+ varZn︸ ︷︷ ︸
1

= n

The expected squared Mahalanobis distance is the dimension of the vector space that Y inhabits.



Exercise 3.35 Let H be the orthogonal projection matrix onto a d-dimensional subspace S ⊆ RRRn, and let Y be a
random vector with covariance matrix σ2I. Show that

E‖HY‖2 = dσ2 + ‖Hµ‖2

Solution. By comparison to Equation 3.1, all that remains is to verify that the trace of Hσ2I is dσ2.

tr [Hσ2I] = σ2trH
= dσ2

because according to Exercise 1.67 the trace of an orthogonal projection matrix equals the dimension of the subspace
that it projects onto.

Exercise 4.1 Suppose that Y1, . . . , Yn satisfy a location model

Yi = α+ εi.

Show that the least-squares point (Theorem 2.1) is an unbiased estimator for α.

Solution. Remember that the *least-squares point* is simply the average of the response values. The expecta-
tion is

EY = E( 1
n

∑
i

Yi)

= 1
n

∑
i

EYi︸︷︷︸
α

= α.

Exercise 4.2 Suppose that Y1, . . . , Yn are uncorrelated and all have the same variance σ2. What’s the variance of
the least-squares point?

Solution. The variance of a constant times a random variable equals the square of that constant times the variance
of the random variable (Exercise 3.23). Furthermore, the variance of a sum of uncorrelated random variables equals
the sum of the variances (Exercise 3.26).

varY = var ( 1
n

∑
i

Yi)

= 1
n2

∑
i

varYi︸ ︷︷ ︸
σ2

= 1
n2 (nσ2)

=
σ2

n
.

Exercise 4.5 Suppose that a response variable satisfies a simple linear model of an explanatory variable and that
it is predicted by the least-squares line. Which is larger: the sum of squared *errors* or the sum of squared *resid-
uals*? Base your answer on the definition of the least-squares line, and explain.

Solution. The sum of squared errors is the sum of squared differences between the response values and the true
line, while the sum of squared residuals is the sum of squared differences between the points and the least-squares
line. The least-squares line is, by definition, the one with the smallest possible sum of squared differences from the
points, so the sum of squared residuals can’t possibly be larger than the sum of squared errors.



Exercise 4.6 The variables picture provides us with a more specific answer to the question posed in Exercise 4.5.
Use the Pythagorean identity to quantify the difference between the sum of squared errors and the sum of squared
residuals.

Solution. The error vector forms the hypotenuse of a right triangle whose other sides are Ŷ−EY and the residual
vector Y − Ŷ. Invoking the Pythagorean identity,

‖ε‖2 = ‖Y − Ŷ‖2 + ‖Ŷ − EY‖2.

The sum of squared errors is larger than the sum of squared residuals by ‖Ŷ − EY‖2.

Exercise 4.7 Let (x
(1)
1 , . . . , x

(m)
1 ), . . . , (x

(1)
n , . . . , x

(m)
n ) ∈ RRRm be n observations of m explanatory variables, and

suppose that the response variable Y1, . . . , Yn satisfies a multiple linear model

Yi = α+ β1(x(1) − x̄(1)) + . . .+ βm(x(m) − x̄(m)) + εi.

Assuming the explanatory variables’ empirical covariance matrix Σ is full rank, show that the coefficients α̂, β̂1, . . . , β̂m
in the least-squares hyperplane y = α̂+β̂1(x(1)−x̄(1))+. . .+β̂m(x(m)−x̄(m)) are unbiased estimators for α, β1, . . . , βm.

Solution. The *least-squares hyperplane* has α̂ = Y , which can be expressed as

Y = 1
n

∑
i

Yi

= 1
n

∑
i

[α+ β1(x
(1)
i − x̄

(1)) + . . .+ βm(x
(m)
i − x̄(m)) + εi]

= α+ β1
1
n

∑
i

(x
(1)
i − x̄

(1))︸ ︷︷ ︸
0

+ . . .+ βm
1
n

∑
i

(x
(m)
i − x̄(m))︸ ︷︷ ︸

0

+ 1
n

∑
i

εi

= α+ 1
n

∑
i

εi.

Its expectation is

EY = α+ 1
n

∑
i

Eεi︸︷︷︸
0

= α.

The vector of empirical covariances of Y with x(1), . . . ,x(m) can be expressed as 1
n X̃

TY where X̃ is the centered
version of the explanatory data matrix. Substituting this representation into the formula from Theorem 2.3,

Eβ̂ = EΣ−1 1
n X̃

TY

= Σ−1 1
n X̃

TEY

= Σ−1 1
n X̃

T (α1 + X̃β)

= Σ−1(αn X̃T1︸︷︷︸
0

+ 1
n X̃

T X̃︸ ︷︷ ︸
Σ

β)

= Σ−1Σβ

= β.



Exercise 4.8 Suppose Y1, . . . , Yn are uncorrelated and all have the same variance σ2. With (x
(1)
1 , . . . , x

(m)
1 ), . . . , (x

(1)
n , . . . , x

(m)
n ) ∈

RRRm as n observations of m explanatory variables, what’s the variance of α̂ and the covariance matrix of β̂ =
(β̂1, . . . , β̂m) in the least-squares hyperplane y = α̂+ β̂1(x(1) − x̄(1)) + . . .+ β̂m(x(m) − x̄(m))?

Solution. Remember that α̂ = Y has the representation α + 1
n

∑
i εi. Its variance once again works out to be

σ2

n . The covariance matrix of β̂ is

cov β̂ = cov Σ− 1
n X̃

TY

= Σ− 1
n X̃

T (σ2I)[Σ− 1
n X̃

T ]T

= σ2

n Σ−( 1
n X̃

T X̃︸ ︷︷ ︸
Σ

)Σ−

= σ2

n Σ−

by Exercise 1.75.

Exercise 4.10 Let x1, . . . ,xn ∈ RRRm be n observations of m explanatory variables, and suppose that the response
variable Y1, . . . , Yn satisfies a linear model

Yi = γ1g1(xi) + . . .+ γdgd(xi) + εi.

Assuming the columns of the design matrix are linearly independent, show that the coefficients γ̂1, . . . , γ̂d in the
least-squares linear fit y = γ̂1g1(x) + . . .+ γ̂dgd(x) are unbiased estimators for γ1, . . . , γd.

Solution. Let M represent the design matrix

M :=

g1(x1) · · · gd(x1)
...

. . .
...

g1(xn) · · · gd(xn)

 .
The expectation of Y = Mγ + ε is Mγ. Using the formula for the least-squares coefficients provided in Theorem
2.4,

Eγ̂ = E(MTM)−1MTY

= (MTM)−1MT EY︸︷︷︸
Mγ

= (MTM)−1(MTM)γ

= γ.

(We know that MTM is invertible because the columns of M are assumed to be linearly independent – see Exercise
1.63.)

Exercise 4.11 Suppose Y1, . . . , Yn are uncorrelated and all have the same variance σ2. With x1, . . . ,xn ∈ RRRm as n
observations of m explanatory variables, what’s the covariance matrix of γ̂ = (γ̂1, . . . , γ̂d) in the least-squares linear
fit y = γ̂1g1(x) + . . .+ γ̂dgd(x)?

Solution. The covariance matrix of γ̂ is

cov γ̂ = cov (MTM)−MTY

= (MTM)−MT (σ2I)[(MTM)−MT ]T

= σ2(MTM)−MTM(MTM)−

= σ2(MTM)−.

by Exercise 1.75.



Exercise 4.15 Suppose Y = Mβ + ε with cov ε = σ2In, and let Ŷ be the orthogonal projection of Y onto C(M).

Find E‖Y − Ŷ‖2, the expected sum of squared residuals.

Solution. We’ll let H be the orthogonal projection matrix onto M, and use Exercise 3.35 along with Exercises
1.67 and 1.68.

E‖Y − Ŷ‖2 = ‖(I−H)ε‖2

= tr [(I−H)σ2I]
= σ2(n− rankM)

Exercise 4.17 Suppose Y1, . . . , Yn are uncorrelated and all have the same variance σ2. Let x1, . . . ,xn ∈ RRRm be
n observations of m explanatory variables, and assume their empirical covariance matrix Σ has full rank. Let
β̂ = (β̂1, . . . , β̂m) be the coefficients of the explanatory variables in the least-squares hyperplane y = α̂+ β̂1(x(1) −
x̄(1)) + . . .+ β̂m(x(m) − x̄(m)). Find E‖β̂ − Eβ̂‖2 in terms of σ2, n, and the eigenvalues of Σ.

Solution. The ”variance” of any random vector is the trace of its covariance matrix (Exercise 3.25).

E‖β̂ − Eβ̂‖2 = tr cov β̂

= σ2

n tr Σ−1

= σ2

n (λ−1
1 + . . .+ λ−1

m )

where λ1, . . . , λm are the eigenvalues of Σ.

Exercise 4.18 Based on Exercise 4.12, the Gauss-Markov theorem implies that the least-squares coefficient vector
has the smallest possible expected squared estimation error among all random vectors that are both linear func-
tions of the response and unbiased for its expectation. However, Equation 4.1 identified a < 1 such that a times
the least-squares coefficients of the explanatory variables has smaller expected squared estimation error than the
least-squares coefficient vector do; explain why this doesn’t contradict the Gauss-Markov theorem.

Solution. Let’s check the conditions of the Gauss-Markov theorem. It applies to linear functions of the response Y
that are unbiased for EY. Because β̂ is linear in Y, so is aβ̂. However, it’s *biased*; its expectation is aβ 6= β, so
Gauss-Markov doesn’t apply.

Exercise 5.1 Find the probability density function for a standard Normal random vector on RRRn.

Solution. Let Z be an RRRn-valued standard Normal random vector. By independence, its pdf equals the prod-
uct of the individual pdfs of its coordinates (Z1, . . . , Zn).

f(z) =
∏
i

1√
2π
e−z

2
i /2

= 1
(2π)n/2

e−(z21+...+z2n)/2

= 1
(2π)n/2

e−‖z‖
2/2



Exercise 5.3 Show that if X is a Normal random vector, then so is MX+v where M is a real matrix and v is a vector.

Solution. With µ and C representing the expectation and covariance of X, the transformed random vector is

MX + v = M(C1/2Z + µ) + v

= [MC1/2]Z + [Mµ + v]

with Z standard Normal. This fits the definition of a Normal random vector.

Exercise 5.6 Find the expectation of W ∼ χ2
k.

Solution. W can be represented as the squared norm of a standard Normal random vector. Its expectation is
the same as the expected squared norm of any standardized random vector Z on RRRk:

E‖Z‖2 = E(Z2
1 + . . .+ Z2

k)

= EZ2
1 + . . .+ EZ2

k

= varZ1︸ ︷︷ ︸
1

+ . . .+ varZk︸ ︷︷ ︸
1

= k.

Exercise 5.7 If Y ∼ N(µ,C) is an RRRn-valued random vector, what’s the distribution of the squared Mahalanobis
distance of Y from its own distribution?

Solution. Allow for degenerate distributions by using the approach described at the end of Section 3.5. Let
Z := C−1/2(Y − µ) ∼ N(0, I) represent the standardized version in RRRrankC. The squared Mahalanobis distance
from Y to N(µ,C) is

‖C−1/2[Y − µ]‖2 = ‖C−1/2[(C1/2Z + µ)− µ]‖2

= ‖Z‖2

∼ χ2
rankC.

Exercise 5.8 Let Z be an RRRn-valued random vector with the standard Normal distribution, and let H be an
orthogonal projection matrix. Find the distribution of ‖HZ‖2.

Solution. Let u1, . . . ,un be an orthonormal basis with u1, . . . ,urankH spanning the space that H projects onto.
Because the orthogonal projection is

HZ = 〈Z,u1〉u1 + . . .+ 〈Z,urankH〉urankH

its squared length is the sum of its squared coordinates

‖HZ‖2 = 〈Z,u1〉2 + . . .+ 〈Z,urankH〉2.

These coordinates are independent standard Normal random variables, according to the discussion in Section 5.1,
so their sum of squares has distribution χ2

rankH.



Exercise 5.9 Let ε ∼ N(0, σ2I). If H is an orthogonal projection matrix and u is a unit vector orthogonal to C(H),
find the distribution of

〈ε,u〉
‖Hε‖/

√
rankH

.

Solution. First, we’ll divide the numerator and the denominator by σ to connect this ratio to the standard Normal
random vector ε/σ.

〈ε,u〉
‖Hε‖/

√
rankH

=
〈(ε/σ),u〉

‖H(ε/σ)‖/
√

rankH

Let u1, . . . ,un be an orthonormal basis with u1, . . . ,urankH spanning C(H) and urankH+1 equal to u. The numerator
is simply the coordinate of ε/σ with respect to u, so it’s a standard Normal random variable. From Exercise 5.8,
‖H(ε/σ)‖2 ∼ χ2

rankH. Because the numerator and the denominator are functions of distinct coordinates, they’re
independent of each other, so the random variable has the trankH distribution.

Exercise 5.10 Let ε ∼ N(0, σ2I). If H is an orthogonal projection matrix and u is a unit vector orthogonal to
C(H), and a ∈ RRR, find the distribution of

a+ 〈ε,u〉
‖Hε‖/

√
rankH

.

Solution. First, we’ll divide the numerator and the denominator by σ.

a+ 〈ε,u〉
‖Hε‖/

√
rankH

=
a/σ + 〈(ε/σ),u〉
‖H(ε/σ)‖/

√
rankH

As in Exercise 5.9, the second term in the numerator is standard Normal, the denominator is χ2
rankH divided by

its degrees of freedom, and the numerator and denominator are independent. By the definition of non-central
t-distributions, the ratio’s distribution is trankH,a/σ.

Exercise 5.11 Let T ∼ tk. What’s the distribution of T 2?

Solution. From the definition of tk, we can represent T using independent Z ∼ N(0, 1) and V ∼ χ2
k.

T 2 =

(
Z√
V/k

)2

=
Z2/1

V/k

Because Z2 ∼ χ2
1, this expression matches the definition of the f1,k distribution.

Exercise 5.12 Let ε ∼ N(0, σ2I), and let H1 and H2 be orthogonal projection matrices onto two subspaces that

are orthogonal to each other. Find the distribution of ‖H1ε‖2/rankH1

‖H2ε‖2/rankH2
.

Solution. We can divide both the numerator and the denominator by σ2 to produce random variables whose
distributions we know from Exercise 5.8.

‖H1ε‖2/rankH1

‖H2ε‖2/rankH2
=
‖H1(ε/σ)‖2/rankH1

‖H2(ε/σ)‖2/rankH2

The numerator is a χ2
rankH1

-distributed random variable divided by its degrees of freedom, while the denominator
is a χ2

rankH2
-distributed random variable divided by its degrees of freedom. Because the subspaces are orthogonal,

we know that the two orthogonal projections are independent of each other, allowing us to conclude that the ratio
matches the definition of frankH1,rankH2

.



Exercise 5.13 Let ε ∼ N(0, σ2I), and let H1 and H2 be orthogonal projection matrices onto two subspaces that

are orthogonal to each other. Find the distribution of ‖v+H1ε‖2/rankH1

‖H2ε‖2/rankH2
, where v is a non-random vector.

Solution. Divide both the numerator and the denominator by σ2.

‖v + H1ε‖2/rankH1

‖H2ε‖2/rankH2
=
‖ 1
σv + H1(ε/σ)‖2/rankH1

‖H2(ε/σ)‖2/rankH2

As in Exercise 5.12, the denominator is χ2
rankH2

-distributed and is independent of the numerator. This time the
numerator is a non-central χ2 random variable divided by its degrees of freedom with non-centrality parameter
‖ 1
σv‖2 = ‖v‖2/σ2. Thus the ratio’s distribution matches the definition of frankH1,rankH2,‖v‖2/σ2 .

Exercise 6.1 Let xi represent the explanatory value(s) of the ith observation. Consider modeling the response
variable by

Yi = fθ(xi) + εi

with ε1, . . . , εn
iid∼ N(0, σ2) and θ ∈ Θ indexing a set of possible functions. (Notice that this form is far more general

than the linear model with iid Normal errors.) Show that the maximum likelihood estimator for θ is precisely the
parameter value that minimizes the sum of squared residuals.

Solution. The response values have distribution Yi ∼ N(fθ(xi), σ
2) and are independent of each other. Because of

independence, the overall likelihood L(θ; Y) is the product of the individual observations’ likelihoods.

L(θ; Y) =

n∏
i=1

1√
2πσ2

e−
1

2σ2
(Yi−fθ(xi))

2

=

(
1

2πσ2

)n/2
e−

1
2σ2

∑n
i=1(Yi−fθ(xi))

2

The parameter θ only appears in the sum of squared residuals
∑n
i=1(Yi − fθ(xi))

2. The smaller the sum of
squared residuals is, the larger the likelihood is, so the ”least-squares parameter” is exactly the maximum likelihood
estimator. Notice that this equivalence doesn’t depend on the value of σ and that it holds even if σ is unknown.

Exercise 6.2 Suppose Y = Mγ + ε with error vector ε ∼ N(0, σ2I). If Ŷ is the least-squares linear regression’s

prediction vector for design matrix M, what’s the distribution of ‖Y − Ŷ‖2/σ2?

Solution. We saw in Chapter 4 that the least-squares residual vector Y − Ŷ is the orthogonal projection of ε
onto C(M)⊥ which has dimension n − rankM. The standardized version ε/σ is standard Normal, so according to
Exercise 5.8,

‖Y − Ŷ‖2

σ2
= ‖(I−H)(ε/σ)‖2

∼ χ2
n−rankM

where H represents the orthogonal projection matrix onto C(M).



Exercise 6.3 Let X̃ ∈ RRRn×m be a centered explanatory data matrix with full rank. Assume

Y = α+ X̃β + ε

with ε1, . . . , εn
iid∼ N(0, σ2). Write the standardized version of the least-squares slope β̂j . What is its distribution?

Solution. The distribution of β̂j is Normal because its a linear transformation of Y which is Normal. Its ex-

pectation equals the jth entry of Eβ̂ = β, and its variance equals the jth diagonal of cov β̂ = σ2

n Σ−1:

β̂j ∼ N(βj ,
σ2

n �−1
jj ).

The standardized version is

β̂j − βj
σ√
n

√
�−1
jj

∼ N(0, 1).

Exercise 6.4 Let X̃ ∈ RRRn×m be a centered explanatory data matrix with full rank. Assume

Y = α+ X̃β + ε

with ε1, . . . , εn
iid∼ N(0, σ2). Devise a t-distributed random variable involving the least-squares slope β̂j .

Solution. From Exercise 6.3, the standardized version is
β̂j−βj
σ√
n

√
�−1
jj

∼ N(0, 1). Exercise 2.8 implies that β̂ is a

function of Hε, so the ratio trick allows us to substitute σ̂ for σ to derive

β̂j − βj
σ̂√
n

√
�−1
jj

∼ tn−m−1.

Exercise 6.5 Let X̃ ∈ RRRn×m be a centered explanatory data matrix with full rank. Assume

Y = α+ X̃β + ε

with ε1, . . . , εn
iid∼ N(0, σ2). Devise a 95% confidence interval for βj .

Solution. From Exercise 6.4,
β̂j−βj
σ̂√
n

√
�−1
jj

∼ tn−m−1, so

P

−τ−1
n−m−1(.975) ≤ βj − β̂j

σ̂√
n

√
�−1
jj

≤ τ−1
n−m−1(.975)

 = .95.

The event can be rewritten as

β̂j − τ−1
n−m−1(.975) σ̂√

n

√
�−1
jj ≤ βj ≤ β̂j + τ−1

n−m−1(.975) σ̂√
n

√
�−1
jj

which means that β̂j ± τ−1
n−m−1(.975) σ̂√

n

√
�−1
jj is a 95% confidence interval for βj .



Exercise 6.6 Let X̃ ∈ RRRn×m be a centered explanatory data matrix with full rank. Assume

Y = α+ X̃β + ε

with ε1, . . . , εn
iid∼ N(0, σ2). Devise a test statistic Tj for the null hypothesis that βj = 0.

Solution. From Exercise 6.4,
β̂j−βj
σ̂√
n

√
�−1
jj

∼ tn−m−1. The assumption that βj = 0 leads to the test statistic

Tj :=
β̂j

σ̂√
n

√
�−1
jj

∼ tn−m−1.

The significance probability is 2τn−m−1(−|Tj |).

Exercise 6.7 Section 6.3.7.2 described a test statistic (Equation 6.1) for the null hypothesis that all of the slopes
in a multiple linear model are 0. Is it the same as the test statistic prescribed by Equation 6.3?

Solution. The null hypothesis is that EY is in the span of 1, so the general approach (Equation 6.3) uses the
test statistic

‖Ŷ − Y 1‖2/m
σ̂2

∼ fm,n−m−1,

while Section 6.3.7.2 derived the test statistic

n‖Σ1/2β̂‖2/m
σ̂2

∼ fm,n−m−1.

Let’s analyze the factor in which they appear to differ. Recall that for multiple linear regression the least-squares
prediction vector can be expressed as

Ŷ = Y 1 + X̃β̂

where X̃ is the centered explanatory data matrix. Therefore,

‖Ŷ − Y 1‖2 = ‖X̃β̂‖2

= β̂
T
X̃T X̃β̂.

And in the other test statistic,

n‖Σ1/2β̂‖2 = nβ̂
T

Σ︸︷︷︸
1
n X̃T X̃

β̂

= β̂
T
X̃T X̃β̂

so they turn out to be exactly the same.

Exercise 6.8 Let Y = α1 + X̃β + ε with X̃ ∈ RRRn×m representing a centered data matrix. If Ŷ is the least-squares
prediction vector that comes from multiple linear regression, find the distribution of

‖Ŷ − Y 1‖2

σ̂2
.

Solution. Based on the preceding discussion, the statistic in question has non-central f -distribution. Ŷ is the
projection onto an (m+ 1)-dimensional subspace, while Y 1 is the projection onto a 1-dimensional subspace. Thus
the numerator has m degrees of freedom, and the denominator has n−m−1 degrees of freedom. The non-centrality
parameter is

‖(α1 + X̃β)− (α1)‖2/σ2 = ‖X̃β‖2/σ2.


