
Exercise 1.1 Let 0 be the zero vector, and let a be a scalar. Show that a0 = 0.

Solution. By definiton, a vector space has the property that v − v = 0 for any vector v. In particular, 0− 0 = 0.

a0 = a(0− 0)

= a0− a0
= 0

We distributed scalar multiplication then used the v − v = 0 property again.

Exercise 1.2 Let v be a vector, and let 0 be the zero scalar. Show that 0v equals the zero vector.

Solution. The zero scalar satisfies a − a = 0 for every a in the scalar field; in particular, 0 − 0 = 0. We make this
substitution, then distribute and invoke the fact that v − v equals the zero vector 0 for any vector v.

0v = (0− 0)v

= 0v − 0v

= 0

Exercise 1.3 Show that the span of v1, . . . ,vm is a subspace.

Solution. Consider two vectors in the span, say
[
v1 · · · vm

]
b1 and

[
v1 · · · vm

]
b2. For a pair of scalars

a1, a2 the linear combination

a1

[
v1 · · · vm

]
b1 + a2

[
v1 · · · vm

]
b2 =

[
v1 · · · vm

]
(a1b1 + a2b2)

is also in the span, so the span satisfies the definition of a subspace.

Exercise 1.4 Show that the span of v1, . . . ,vm is the same as the span of v1 + a1vm, . . . ,vm−1 + am−1vm,vm for
any scalars a1, . . . , am−1.

Solution. We’ll show that an arbitrary linear combination of v1, . . . ,vm can also be represented as a linear combi-
nation of the altered vectors by adding and subtracting the appropriately scaled versions of vm.

b1v1 + . . .+ bm−1vm−1 + bmvm = b1(v1 + a1vm) + . . .+ bm−1(vm−1 + am−1vm) + (bm − b1a1 − . . .− bm−1am−1)vm

Similarly, an arbitrary linear combination of the altered vectors becomes a linear combination of v1, . . . ,vm by
distributing the coefficients and regrouping the terms.

b1(v1 + a1v1) + . . .+ bm−1(vm−1 + am−1vm) + bmvm = b1v1 + . . .+ bm−1vm−1 + (bm + b1a1 + . . .+ bm−1am−1)vm



Exercise 1.5 Let F be a field, and suppose T is a linear operator from Fm to V. Show that T can be represented
as a mapping of b ∈ Fm to

[
v1 · · · vm

]
b for some v1, . . . ,vm.

Solution. First, consider that T and
[
v1 · · · vm

]
would have to agree on where to map the standard basis

vectors. We see that
[
v1 · · · vm

]
maps e1 := (1, 0, . . . , 0) to v1, so v1 must be Te1. Likewise v2 would need to

Te2, and so on. Let’s check that this proposal
[
Te1 . . . Tem

]
b is the same as Tb for an arbitrary vector b.[

Te1 . . . Tem
]
b =

[
Te1 . . . Tem

]
(b1e1 + . . .+ bmem)

= b1
[
Te1 . . . Tem

]
e1 + . . .+ bm

[
Te1 . . . Tem

]
em

= b1Te1 + . . .+ bmTem

= T(b1e1 + . . .+ bmem)

= Tb

Exercise 1.6 Prove that the null space of T is a subspace.

Solution. Let b1 and b2 be in the null space. Given any scalars a1, a2, consider the vector of scalars a1b1 + a2b2.

T(a1b1 + a2b2) = a1 Tb1︸︷︷︸
0

+a2 Tb2︸︷︷︸
0

= 0

Since a1b1 + a2b2 is also mapped to 0, it’s in the null space as well; the null space therefore satisfies the definition
of a subspace.

Exercise 1.7 Show that if v1, . . . ,vm are linearly independent then (b1, . . . , bm) = (0, . . . , 0) is the only vector of
scalars for which b1v1 + . . .+ bmvm = 0.

Solution. Assume there exist scalars b1, . . . , bm for which b1v1 + . . . + bmvm = 0 with b1 6= 0 (without loss of
generality). Then the rearranged equation

v1 =
(
− b2b1

)
v2 + . . .+

(
− bmb1

)
vm

shows that v1 is a linear combination of the other vectors, contradicting the assumption of linear independence.

Exercise 1.8 Show that if (b1, . . . , bm) = (0, . . . , 0) is the only vector of scalars for which b1v1 + . . .+ bmvm = 0,
then v1, . . . ,vm are linearly independent.

Solution. Assume that v1, . . . ,vm aren’t linearly independent; in particular, and without loss of generality, as-
sume vm = c1v1 + . . . + cm−1vm−1 for some scalars c1, . . . , cm−1. Then subtracting vm from both sides, we see
that

0 = c1v1 + . . .+ cm−1vm−1 + (−1)vm

provides a linear combination of zero in which not all of the scalar coefficients are zeros.



Exercise 1.9 Let z be in the null space of
[
v1 · · · vm

]
. Given any vector of scalars b, show that the linear

combination of v1, . . . ,vm produced by the entries of b + z is exactly the same as that produced by b.

Solution. With z in the null space, the b + z linear combination results in[
v1 · · · vm

]
(b + z) =

[
v1 · · · vm

]
b +

[
v1 · · · vm

]
z︸ ︷︷ ︸

0

=
[
v1 · · · vm

]
b.

Exercise 1.10 Show that if
[
v1 · · · vm

]
b =

[
v1 · · · vm

]
c then c must equal b + z for some z in the null

space of
[
v1 · · · vm

]
.

Solution. Trivially c = b + (c− b); we show that the second term is in the null space.[
v1 · · · vm

]
(c− b) =

[
v1 · · · vm

]
c−

[
v1 · · · vm

]
b

= 0

because the two linear combinations are equal.

Exercise 1.11 Show that v1, . . . ,vm are linearly independent if and only if b 6= c implies
[
v1 · · · vm

]
b 6=[

v1 · · · vm
]
c, that is, every vector in the span corresponds to a unique vector of scalar coefficients.

Solution. WithN representing the null space of
[
v1 · · · vm

]
, the set of coefficient vectors producing

[
v1 · · · vm

]
b

is exactly {b + z : z ∈ N}; this set has a single element (b) if and only if the null space has only the zero vector.
We’ve already established that this condition is equivalent to linear independence.

Exercise 1.12 Let {v1, . . . ,vm} be a basis for V. How do you know that {v2, . . . ,vm} is not also a basis for V?

Solution. By linear independence, no linear combination of v2, . . . ,vm equals v1 ∈ V. Therefore, v2, . . . ,vm
do not span V and thus do not satisfy the definition of a basis.

Exercise 1.13 Let {v1, . . . ,vm} be a basis for V, and let S be a proper subspace of V. Explain why at least one
of v1, . . . ,vm is not in S.

Solution. Any w in V has a unique representation as b1v1 + . . . bmvm for some scalar coefficients. Assume ev-
ery one of the basis vectors were in S. Because S is a subspace it contains all linear combinations of its vectors
which would include w. Therefore, if S is a subspace of V that includes an entire basis for V, then it would have
to be equal to V.

Exercise 1.14 Suppose {v1, . . . ,vm} is a basis for V. Prove that every basis for V has exactly m vectors.

Solution. Suppose that {w1, . . . ,wk} is also a basis for V and that k < m. The set {v2, . . . ,vm} doesn’t span V, so
there must be some vector in {w1, . . . ,wk} that isn’t in the span of {v2, . . . ,vm}. Assume without loss of generality
that w1 isn’t in the span of {v2, . . . ,vm}. Then {w1,v2, . . . ,vm} is linearly independent. By repeating this logic
with v2 and continuing through vk, we end up claiming that {w1, . . . ,wk,vk+1, . . . ,vm} is a linearly independent
set. However, since {w1, . . . ,wk} is a basis for V, the remaining vectors {vk+1, . . . ,vm} ⊂ V have to be in their
span which is a contradiction. This proves that one basis for V can’t be larger than another.



Exercise 1.15 Let V be an m-dimensional vector space. Prove that any set of m linearly independent vectors in
V must be basis for V.

Solution. Let V := {v1, . . . ,vm} be a set of linearly independent vectors in V, and let W := {w1, . . . ,wm}
be a basis for V. Assume that the span of V is not V. From Exercise 1.13 there exists at least one vector in W that
isn’t in the span of V ; without loss of generality, let it be w1. By continuing to add one vector at a time from V to
W in this way, you would maintain linear independence and you would eventually produce a set that does have V
as its span. But that set will have more than m vectors, which contradicts the fact from Exercise 1.14 that every
basis for V has m vectors.

Exercise 1.16 Let S be a subspace of an n-dimensional vector space V. Prove that a basis for S exists.

Solution. We’ll describe a constructive proof. Take any vector of S and call it v1. If S equals the span of
v1, then v1 is a basis. Otherwise, take a vector from S that is outside of the span of v1 and call it v2. If S equals
the span of {v1,v2}, then they form a basis. Otherwise, continue to repeat this process of adding one more linearly
independent vector at a time until the vectors span S. The algorithm is guaranteed to terminate with no more than
n vectors, because any set of n linearly independent vectors is a basis for V according to Exercise 1.15.

Exercise 1.17 Let F be a field. Find the dimension of Fm as defined in Section 1.2.

Solution. Consider the n vectors e1 := (1, 0, . . . , 0), . . . , em := (0, . . . , 0, 1). A given vector (c1, . . . , cm) ∈ Fm
has the unique representation c1e1 + . . .+ cmem with respect to these vectors, so they comprise a basis (known as
the standard basis). This tells us that the dimension of Fm is m.

Exercise 1.18 Suppose
[
v1 · · · vm

]
and

[
w1 · · · wm

]
have the exact same behavior on a basis B =

{b1, . . . ,bm} for the vector space of scalar coefficients, that is,
[
v1 · · · vm

]
bj =

[
w1 · · · wm

]
bj for ev-

ery j ∈ {1, . . . ,m}. Show that vj must equal wj for every j ∈ {1, . . . ,m}.

Solution. We’ll first show that
[
v1 · · · vm

]
and

[
w1 · · · wm

]
must have the exact same behavior on ev-

ery vector in Fm (where F is the scalar field) by representing an arbitrary vector x with respect to U . Letting
x = a1b1 + . . .+ ambm,[

v1 · · · vm
]
x =

[
v1 · · · vm

]
(a1b1 + . . .+ ambm)

= a1

[
v1 · · · vm

]
b1 + . . .+ am

[
v1 · · · vm

]
bm

= a1

[
w1 · · · wm

]
b1 + . . .+ am

[
w1 · · · wm

]
bm

=
[
w1 · · · wm

]
(a1b1 + . . .+ ambm)

=
[
w1 · · · wm

]
x.

In particular, the fact that
[
v1 · · · vm

]
and

[
w1 · · · wm

]
map (1, 0, . . . , 0) to the same vector means that v1

must equal w1. Such an argument holds for every column in turn.

Exercise 1.19 Let λ be an eigenvalue for T. Show that the eigenspace of λ is a subspace.

Solution. Suppose that q1 and q2 are both in the eigenspace. For any scalars a1, a2,

T(a1q1 + a2q2) = a1Tq1 + a2Tq2

= a1λq1 + a2λq2

= λ(a1q1 + a2q2)

which confirms that a1q1 + a2q2 is also an eigenvector for T with eigenvalue λ.



Exercise 1.20 Suppose T has eigenvalues λ1, . . . , λm with corresponding eigenvectors q1, . . . ,qm. Let a be a non-
zero scalar. Identify eigenvalues and eigenvectors of aT, i.e. the function that maps any vector v to a times Tv.

Solution. Consider the action of aT on qj .

[aT](qj) = a(Tqj)

= aλjqj

So q1, . . . ,qm remain eigenvectors, and their eigenvalues are aλ1, . . . , aλm. Furthermore, no additional eigenvectors
for aT are introduced because clearly they would also have been eigenvectors for T.

Exercise 1.21 Explain why any linear operator that has 0 as an eigenvalue doesn’t have an inverse function.

Solution. The corresponding eigenspace is a subspace (with dimension at least 1) that the linear operator maps to
0. Because it maps multiple elements of its domain to the same value, it can’t be invertible.

Exercise 1.22 Let T−1 be the inverse of a linear operator T, that is, T−1Tv = v for every v in the domain of T.
Show that T is also the inverse of T−1, that is, TT−1w = w for every w in the domain of T−1 (which we’ve defined
to be the range of T).

Solution. We know that w = Tv for some v; by making this substitution,

TT−1w = TT−1Tv

= Tv

= w.

Exercise 1.23 Suppose a linear operator T has an inverse T−1. Show that T−1 is also linear:

T−1(a1w1 + a2w2) = a1T−1w1 + a2T−1w2

for all vectors w1,w2 and scalars a1, a2.

Solution. As an inverse function, T−1 maps from T’s range to its domain. w1 and w2 are in the range of T,
so we know that they can be represented by w1 = Tv1 and w2 = Tv2 for some vectors v1 and v2.

T−1(a1w1 + a2w2) = T−1(a1Tv1 + a2Tv2)

= T−1T(a1v1 + a2v2)

= a1v1 + a2v2

= a1T−1w1 + a2T−1w2

Exercise 1.24 Let T be a linear operator that has non-zero eigenvalues λ1, . . . , λn with eigenvectors q1, . . . ,qn.
Suppose T is invertible. Show that T−1 also has q1, . . . ,qn as eigenvectors, and find the corresponding eigenvalues.

Solution. Consider the behavior of the inverse on qj . We know that the inverse is supposed to undo the be-
havior of T, so T−1Tqj should equal qj .

T−1Tqj = T−1(λjqj)

= λjT−1qj

For λjT−1qj to equal qj , we can see that qj must be an eigenvector of T−1 with eigenvalue 1/λj . Thus T−1 has
eigenvalues 1/λ1, . . . , 1/λn with eigenvectors q1, . . . ,qn.



Exercise 1.25 Show that inner products are also additive in their second argument:

〈v,w + x〉 = 〈v,w〉+ 〈v,x〉.

Solution. The complex conjugate of a sum is equal to the sum of the complex conjugates, so

〈v,w + x〉 = 〈w + x,v〉

= 〈w,v〉+ 〈x,v〉
= 〈v,w〉+ 〈v,x〉.

Exercise 1.26 Show that inner products are also homogeneous in their second argument when the scalar is real:
for every a ∈ RRR,

〈v, aw〉 = a〈v,w〉.

Solution. The complex conjugate of a product is equal to the product of the complex conjugates, and the complex
conjugate of a real number is itself, so

〈v, aw〉 = 〈aw,v〉

= a〈w,v〉

= a〈w,v〉
= a〈v,w, 〉.

Exercise 1.27 Show that if y is orthogonal to every one of v1, . . . ,vm, then it is also orthogonal to every vector
in their span.

Solution. Let b1v1 + . . . bmvm represent an arbitrary vector in the span. By linearity of inner products, its
inner product with y is

〈b1v1 + . . . bmvm,y〉 = b1 〈v1,y〉︸ ︷︷ ︸
0

+ . . .+ bm 〈vm,y〉︸ ︷︷ ︸
0

= 0

because y is orthogonal to each of the basis vectors.

Exercise 1.28 Show that ‖av‖ = |a|‖v‖ for any scalar a.

Solution. From steps in our solution to Exercise 1.26, we can realize that 〈x, ay〉 = a〈x,y〉. Using the defini-
tion of norm,

‖av‖ =
√
〈av, av〉

=
√
aa
√
〈v,v〉

= |a|‖v‖.

Note that with a = b+ ic, the squared absolute value |a|2 is defined to be b2 + c2.



Exercise 1.29 Suppose v1, . . . ,vm are orthogonal to each other and none of them is the zero vector. Show that
they must be linearly independent.

Solution. Without loss of generality, we will consider whether or not vm can be equal to some linear combina-
tion b1v1 + . . .+ bm−1vm−1. The inner product of this linear combination with vm equals

〈b1v1 + . . .+ bm−1vm−1,vm〉 = b1 〈v1,vm〉︸ ︷︷ ︸
0

+ . . .+ bm−1 〈vm−1,vm〉︸ ︷︷ ︸
0

= 0.

But the inner product of vm with itself is equal to its squared length, which must be greater than zero by the
assumption that vm isn’t the zero vector. Therefore, no such linear combination can be equal to vm.

Exercise 1.30 Suppose 〈x,v〉 = 〈y,v〉 for all v. Show that x and y must be the same vector.

Solution. Subtracting, 〈y,v〉 from both sides of the assumption,

0 = 〈x,v〉 − 〈y,v〉
= 〈x− y,v〉

for all v. In particular, substitute x− y for v to see that ‖x− y‖2 = 0 which implies that x− y = 0, i.e. x = y.

Exercise 1.31 Justify the Pythagorean identity extended to m orthogonal vectors v1, . . . ,vm:

‖v1 + . . .+ vm‖2 = ‖v1‖2 + . . .+ ‖vm‖2.

Solution. v1 is orthogonal to v2 + . . .+ vm, so by the Pythagorean identity

‖v1 + . . .+ vm‖2 = ‖v1‖2 + ‖v2 + . . .+ vm‖2.

This logic can be applied repeatedly to bring out one vector at a time leading to the desired result. (For a more
formal argument, one can invoke induction.)

Exercise 1.32 Given a non-zero vector v, find the norm of 1
‖v‖v.

Solution. Using Exercise 1.28 and the fact that norms are non-negative,∥∥∥ 1
‖v‖v

∥∥∥ = 1
‖v‖‖v‖

= 1.

Exercise 1.33 Given a unit vector u, find a unique representation of the vector y as the sum of a vector in the
span of u and a vector orthogonal to the span of u.

Solution. We’ll explicitly construct the desired vector in the span of u. The vector we seek must equal b̂u for
some scalar b̂ . Based on the trivial identity y = b̂u + (y − b̂u), we see that we need the second vector y − b̂u to
be orthogonal to u. Its inner product with u is

〈y − b̂u,u〉 = 〈y,u〉 − b̂ 〈u,u〉︸ ︷︷ ︸
‖u‖2=1

which is zero precisely when b̂ = 〈y,u〉. Therefore, y can be represented as the sum of 〈y,u〉u which is in the span
of u and (y − 〈y,u〉u) which is orthogonal to the span of u.



Exercise 1.34 Given a non-zero vector v, find a unique representation of the vector y as the sum of a vector in
the span of v and a vector orthogonal to the span of v.

Solution. A vector is in the span of v if and only if it’s in the span of the unit vector v
‖v‖ . Likewise, a vector

is orthogonal to the span of v if and only if it’s orthogonal to the unit vector v
‖v‖ . Based on our solution to Exercise

1.33 the part in the span of v must be 〈
y,

v

‖v‖

〉
v

‖v‖
=
〈y,v〉
‖v‖2

v.

Thus the desired representation of y is

y =
〈y,v〉
‖v‖2

v︸ ︷︷ ︸
∈span{v}

+

(
y − 〈y,v〉

‖v‖2
v

)
︸ ︷︷ ︸
⊥span{v}

.

Exercise 1.35 Let {u1, . . . ,um} be an orthonormal basis for V. Find a unique representation of y ∈ V as a linear
combination of the basis vectors.

Solution. The correct coefficients can be readily determined thanks to the orthogonality of the terms:

y = b̂1u1︸︷︷︸
∈span{u1}

+ b̂2u2 + . . .+ b̂mum︸ ︷︷ ︸
⊥span{u1}

.

By comparison to Exercise 1.33, the first term has to be 〈y,u1〉u1, so its coefficient has to be b̂1 = 〈y,u1〉. By
reasoning similarly for each of the basis vectors, we conclude that y must have the unique representation

y = 〈y,u1〉u1 + . . .+ 〈y,um〉um.

Exercise 1.36 Let {u1, . . . ,um} be an orthonormal basis for a real vector space V. Show that the inner product
between x and y equals the sum of the product of their squared coordinates with respect to u1, . . . ,um:

〈x,y〉 =
∑
i

(〈x,ui〉〈y,ui〉).

Solution. We’ll use the orthonormal basis representation (Exercise 1.35) to expand y use linearity of inner products.

〈x,y〉 = 〈x, 〈y,u1〉u1 + . . .+ 〈y,um〉um〉
= 〈x, 〈y,u1〉u1〉+ . . .+ 〈x, 〈y,um〉um〉
= 〈y,u1〉〈x,u1〉+ . . .+ 〈y,um〉〈x,um〉.



Exercise 1.37 Let {u1, . . . ,um} be an orthonormal basis for a real vector space V, and let y ∈ V. Consider the
approximation ŷ := 〈y,u1〉u1 + . . .+ 〈y,uk〉uk with k ≤ m. Use Parseval’s identity to derive a simple formula for
the squared norm of y − ŷ, which we might call the squared approximation error.

Solution. Representing y with respect to the orthonormal basis, we find that the difference between the vectors is

y − ŷ = (〈y,u1〉u1 + . . .+ 〈y,um〉um)− (〈y,u1〉u1 + . . .+ 〈y,uk〉uk)

= 〈y,uk+1〉uk+1 + . . .+ 〈y,um〉um.

Its squared norm is the sum of its squared coordinates, so

‖y − ŷ‖2 = 〈y,uk+1〉2 + . . .+ 〈y,um〉2.

Exercise 1.38 Let {u1, . . . ,um} be an orthonormal basis for a real vector space V, and let y ∈ V. Explain which
term in the representation 〈y,u1〉u1 + . . . + 〈y,um〉um best approximates y in the sense that it results in the
smallest approximation error ‖y − 〈y,uj〉uj‖.

Solution. Based on Exercise 1.37, the squared approximation error ‖y − 〈y,uj〉uj‖2 is equal to the sum of the
squares of the other coefficients

∑
i6=j〈y,ui〉2. Therefore, the approximation error is minimized if we use the term

with the largest squared coefficient.

Exercise 1.39 Given a subspace S, show that S⊥ is also a subspace.

Solution. Let v1,v2 ∈ S⊥, and let b1 and b2 be scalars. We need to show that the linear combination b1v1 + b2v2

is also in S⊥. Letting w be an arbitrary vector in S,

〈b1v1 + b2v2,w〉 = b1 〈v1,w〉︸ ︷︷ ︸
0

+b2 〈v2,w〉︸ ︷︷ ︸
0

= 0.

Exercise 1.40 Let ŷ be the orthogonal projection of y onto S. Use the Pythagorean identity to show that the
vector in S that is closest to y is ŷ.

Solution. Let v be an arbitrary vector in S. Realizing that ŷ − v is in S and that y − ŷ is orthogonal to S,
we observe a right triangle (Figure 1.3) with sides y − v, ŷ − v, and y − ŷ. By the Pythagorean identity,

‖y − v‖2 = ‖y − ŷ‖2 + ‖ŷ − v‖2.

The first term on the right doesn’t depend on the choice of v, so the quantity is uniquely minimized by choosing v
equal to ŷ to make the second term zero.



Exercise 1.41 Let S1 and S2 be subspaces that are orthogonal to each other, and let S be the span of their union.
If ŷ1 and ŷ2 are the orthogonal projections of y onto S1 and S2, show that the orthogonal projection of y onto S
is ŷ1 + ŷ2.

Solution. For an arbitrary v ∈ S, we need to establish that

y − (ŷ1 + ŷ2) ⊥ v.

Every vector in the span of S1 ∪S2 can be represented as the sum of a vector in S1 and a vector in S2. Making use
of this fact, we let v = v1 + v2 with v1 ∈ S1 and v2 ∈ S2.

〈v,y − (ŷ1 + ŷ2)〉 = 〈v1 + v2,y − ŷ1 − ŷ2〉
= 〈v1,y − ŷ1 − ŷ2〉+ 〈v2,y − ŷ1 − ŷ2〉
= 〈v1,y − ŷ1〉︸ ︷︷ ︸

0

+ 〈v2,y − ŷ2〉︸ ︷︷ ︸
0

= 0

Exercise 1.42 Let S be a subspace of V, and let u1, . . . ,um comprise an orthonormal basis for S. Given any
y ∈ V, show that ŷ := 〈y,u1〉u1 + . . .+ 〈y,um〉um is the orthogonal projection of y onto S.

Solution. From Exercise 1.41, we understand that the orthogonal projection of y onto S equals the sum of its
orthogonal projections onto the spans of the orthonormal basis vectors. The representations of these orthogonal
projections as 〈y,u1〉u1, . . . , 〈y,um〉um comes from Exercise 1.33.

Exercise 1.43 Suppose ŷ1 and ŷ2 are the orthogonal projections of y1 and y2 onto S. With scalars a1 and a2,
find the orthogonal projection of a1y1 + a2y2 onto S.

Solution. We can write out each vector in terms of its orthogonal projections onto S and S⊥, then regroup
the terms.

a1y1 + a2y2 = a1[ŷ1 + (y1 − ŷ1)] + a2[ŷ2 + (y2 − ŷ2)]

= (a1ŷ1 + a2ŷ2)︸ ︷︷ ︸
∈S

+ [a1(y1 − ŷ1) + a2(y2 − ŷ2)]︸ ︷︷ ︸
⊥S

This shows that a1ŷ1 + a2ŷ2 is the orthogonal projection of a1y1 + a2y2 onto S. In other words, the orthogonal
projection of a linear combination is the linear combination of the orthogonal projections.

Exercise 1.44 Let ŷ be the orthogonal projection of y onto S. How do we know that y − ŷ is the orthogonal
projection of y onto S⊥?

Solution. We know that y = ŷ + (y − ŷ) with ŷ ∈ S and y − ŷ ∈ S⊥ by definition of orthogonal projection.
Of course, by definition of orthogonal complement, ŷ ⊥ S⊥, so that same representation shows that y − ŷ is the
orthogonal projection of y onto S⊥.

Exercise 1.45 Let S be an m-dimensional subspace of a d-dimensional vector space V. Verify that the dimension
of S⊥ is d−m.

Solution. Let B be a basis for S; it contains m vectors. Suppose there exist more than d − m linearly inde-
pendent vectors in S⊥. All of them are also linearly independent of B, so the two bases taken together would



contain a total of more than d linearly independent vectors in V which is impossible. On the other hand, suppose
S⊥ has a basis of fewer than d−m vectors. Then that basis, taken together with B would have fewer than d vectors,
so it wouldn’t span V. However, this can’t be true because we’ve seen than any vector in V can be represented as
the sum of a vector in S and a vector in S⊥.

Exercise 1.46 Let H be an orthogonal projection operator onto S. Show that every vector in S is an eigenvector
of H.

Solution. If v is in S, then clearly v = v + 0 is the unique representation of v as the sum of a vector in S
and a vector orthogonal to S. Therefore Hv = v, which means that v is an eigenvector with eigenvalue 1.

Exercise 1.47 Let H be the orthogonal projection operator onto S. Show that every vector in S⊥ is an eigenvector
of H.

Solution. If v ⊥ S, then clearly v = 0 + v is the unique representation of v as the sum of a vector in S and
a vector orthogonal to S. Therefore Hv = 0, which means that v is an eigenvector with eigenvalue 0.

Exercise 1.48 Show that every orthogonal projection operator is idempotent.

Solution. Let H be the orthogonal projection operator onto S, and let ŷ be the orthogonal projection of y onto S.
Because ŷ is in S, H maps it to itself.

[H ◦H]y = H(Hy)

= Hŷ

= ŷ

The action of H ◦H is exactly the same as that of H on every vector, so they’re the same operator.

Exercise 1.49 Let H1 be the orthogonal projection operator onto S1, and let H0 be the orthogonal projection op-
erator onto S0 ⊆ S1. Explain why H1 −H0 is the orthogonal projection operator onto the orthogonal complement
of S0 within S1.

Solution. The operator H1 −H0 evaluated at y has the value H1y−H0y. From our discussion regarding Equation
1.4, we know that this is precisely the orthogonal projection of y onto the orthogonal complement of S0 within S1.

Exercise 1.50 Let S0 ⊆ S1 be subspaces, and let H0 and H1 be orthogonal projection operators onto S0 and S1

respectively. Explain why H0 ◦H1 = H1 ◦H0 = H0.

Solution. In our discussion regarding Equation 1.4, we realized that the orthogonal projection of y onto S0 is
the same as the orthogonal projection of H1y onto S0. In other words, it doesn’t matter which order you compose
the operators, you end up at H0y either way.



Exercise 1.51 Let M ∈ Fn×m and L ∈ Fm×n. Show that the trace of ML is equal to the trace of LM.

Solution. The ith diagonal entry of ML is
∑m
j=1 Mi,jLj,i. We express the trace as the sum of these diagonals

then reverse the order of the summations.

trML =

n∑
i=1

m∑
j=1

Mi,jLj,i

=

m∑
j=1

n∑
i=1

Lj,iMi,j

= trLM

Exercise 1.52 Let M and L be matrices such that the product ML is well-defined. Show that (ML)T = LTMT .

Solution. The (i, j) entry of (ML)T is the (j, i) entry of ML, which is
∑
kMj,kLk,i. The (i, j) entry of LTMT

works out to be the same: ∑
k

(LT )i,k(MT )k,j =
∑
k

Lk,iMj,k.

Exercise 1.53 If the columns of U are orthonormal, show that UTU equals the identity matrix I.

Solution. Letting u1, . . . ,um denote the columns,

UTU =

− u1 −
...

− um −


 | |

u1 . . . um
| |



=

uT1 u1 · · · uT1 un
...

. . .
...

uTnu1 · · · uTnun


=

1
. . .

1


with every off-diagonal entry equal to zero.

Exercise 1.54 Show that MTM is symmetric.

Solution. The transpose of a product of matrices is equal to the product of their transposes multiplied in the
reverse order (Exercise 1.52). Thus

(MTM)T = (M)T (MT )T

= MTM.



Exercise 1.55 Show that a square matrix is invertible if and only if its columns are linearly independent.

Solution. Let M be a square matrix. First, assume it’s invertible. Then what linear combinations satisfy Mb = 0?
Multiplying both sides by the inverse, we see that the coefficients b = M−10 must be the zero vector.
Next, suppose the n columns of M are linearly independent. Then for each canonical basis vector ej , there is some
coefficient vector bj such that Mbj = ej . The matrix with these coefficient vectors as its columns is the inverse of
M.

M

 | |
b1 · · · bn
| |

 =

 | |
Mb1 · · · Mbn
| |


=

 | |
e1 · · · en
| |


︸ ︷︷ ︸

In

Exercise 1.56 Suppose M ∈ RRRn×n has orthonormal eigenvectors q1, . . . ,qn with eigenvalues λ1, . . . , λn Show that
M can’t have any other eigenvalues.

Solution. Let us check what would be required for an arbitrary vector w to be an eigenvector for M. We can
express w with respect to the eigenvector basis:

Mw = M(〈w,q1〉q1 + . . .+ 〈w,qn〉qn)

= 〈w,q1〉Mq1 + . . .+ 〈w,qn〉Mqn

= 〈w,q1〉λ1q1 + . . .+ 〈w,qn〉λnqn.

This is only proportional to w = 〈w,q1〉q1 + . . .+ 〈w,qn〉qn if all of the non-zero terms share the same eigenvalue
coefficient. That coefficient, which is one of λ1, . . . , λn, would be the eigenvalue of w.

Exercise 1.57 Let q1, . . . ,qn be an orthonormal basis for RRRn. Show that M has the spectral decomposition

M = λ1q1q
T
1 + . . .+ λnqnqTn

if and only if q1, . . . ,qn are eigenvectors for M with eigenvalues λ1, . . . , λn.

Solution. Let’s figure out the behavior of λ1q1q
T
1 + . . .+ λnqnqTn on the basis vectors.

(λ1q1q
T
1 + . . .+ λnqnqTn )q1 = λ1q1 qT1 q1︸ ︷︷ ︸

‖q1‖2=1

+ . . .+ λnqn qTnq1︸ ︷︷ ︸
0

= λ1q1

meaning q1 is also an eigenvector of this matrix with eigenvalue λ1. Likewise for q2, . . . ,qn. By establishing that
M and λ1q1q

T
1 + . . .+ λnqnqTn behave the same on a basis, we see that they must be the same matrix by Exercise

1.18.



Exercise 1.58 Let M ∈ RRRn×n be a symmetric matrix with non-negative eigenvalues λ1, . . . , λn and corresponding
orthonormal eigenvectors q1, . . . ,qn. Show that the symmetric matrix that has eigenvalues

√
λ1, . . . ,

√
λn with

eigenvectors q1, . . . ,qn is the square root of M (denoted M1/2) in the sense that M1/2M1/2 = M.

Solution. Using a spectral decomposition, we multiply the proposed square root matrix by itself:

M1/2M1/2 = M1/2(
√
λ1q1q

T
1 + . . .+

√
λnqnqTn )

=
√
λ1 M1/2q1︸ ︷︷ ︸

√
λ1q1

qT1 + . . .+
√
λnM1/2qn︸ ︷︷ ︸

√
λnqn

qTn

= λ1q1q
T
1 + . . .+ λnqnqTn

= M.

Exercise 1.59 Let M be a symmetric and invertible real matrix. Show that M−1 is also a symmetric real matrix.

Solution. Let λ1, . . . , λn and q1, . . . ,qn be eigenvalues and orthonormal eigenvectors of M. Based on Exercise
1.24, we can deduce that M−1 has the spectral decomposition

M−1 = 1
λ1

q1q
T
1 + . . .+ 1

λn
qnqTn .

Because M−1 is a linear combination of symmetric real matrices (see Exercise 1.54), it’s clearly a symmetric real
matrix as well.

Exercise 1.60 Let M be a symmetric real matrix. Show that the trace of M equals the sum of its eigenvalues.

Solution. We’ll use the matrix form of spectral decomposition M = Q�QT and the cyclic permutation property of
trace (Exercise 1.51).

trM = tr (Q�QT )

= tr (QTQ︸ ︷︷ ︸
In

�)

= tr�

Exercise 1.61 Let M be an n ×m real matrix. How do you know that the number of terms in a singular value
decomposition of M can’t be more than min(n,m).

Solution. The vectors u1, . . . ,ud ∈ RRRn are linearly independent, so there can’t be more than n of them. Like-
wise, the vectors v1, . . . ,vd ∈ RRRm are linearly independent, so there can’t be more than m of them.

Exercise 1.62 Use a singular value decomposition for M ∈ RRRn×m to find a spectral decomposition of MTM.

Solution. Writing M = USVT ,

MTM = (USVT )T (USVT )

= VST UTU︸ ︷︷ ︸
I

SVT

= VS2VT .

By comparison to the matrix form of spectral decomposition, we see that MTM has eigenvalues equal to the squares
of the singular values of M, and the corresponding eigenvectors are the columns of V.



Exercise 1.63 Explain why MTM is invertible if and only if the columns of M ∈ RRRn×m are linearly independent.

Solution. The columns of M are linearly independent if and only if C(M) is m-dimensional; that’s what we’ll
check.
First, suppose m ≤ n, and let V have the singular value decomposition

V = σ1u1v
T
1 + . . .+ σmumvTm.

Then VTV has the spectral decomposition

VTV = σ2
1v1v

T
1 + . . .+ σ2

mvmvTm.

We know that VTV is invertible if and only if its eigenvalues σ2
1 , . . . , σ

2
m are positive. The column space of V

is a linear combination of all of u1, . . . ,um if and only if none of the singular values σ1, . . . , σm are zero. These
conditions are the same.
Otherwise, if n < m, then the singular decomposition can’t possibly represent a linear combination of m column
vectors, so M can’t have linearly independent. Similarly, the squared singular values can’t account for the m positive
eigenvalues that VTV would need to be invertible.

Exercise 1.64 Let M ∈ RRRn×n. Prove that M is symmetric if and only if 〈v,Mw〉 = 〈Mv,w〉 for every v,w ∈ RRRn.

Solution. First, assume that M is symmetric. For an arbitrary v,w ∈ RRRn, we can use a spectral decomposi-
tion of M to see that

〈v,Mw〉 = vTMw

= vT (λ1q1q
T
1 + . . .+ λnqnqTn )w

= λ1(vTq1)(qT1 w) + . . .+ λn(vTqn)(qTnw)

= λ1(wTq1)(qT1 v) + . . .+ λn(wTqn)(qTnv)

= wT (λ1q1q
T
1 + . . .+ λnqnqTn )v

= wTMv

= 〈w,Mv〉.

Next, suppose 〈v,Mw〉 = 〈Mv,w〉 for every v,w ∈ RRRn. In particular, apply two canonical basis vectors ei and ej .
The vector Mej is the jth column of M, so 〈ei,Mej〉 is the (i, j)-entry of M. By our assumption, it is equal to
〈ej ,Mei〉 which is the (j, i)-entry of M which shows that M must be symmetric.

Exercise 1.65 Let H be a real matrix. Use Exercise 1.64 to show that if H is an orthogonal projection matrix then
it must be symmetric.

Solution.

〈Hv,w〉 = 〈Hv,Hw + (w −Hw)〉
= 〈Hv,Hw〉+ 〈Hv,w −Hw〉

Because Hw is in the space that H projects onto while w−Hw is orthogonal to it, the second term is zero. Similarly,

〈v,Hw〉 = 〈Hv + (v −Hv),Hw〉
= 〈Hv,Hw〉+ 〈v −Hv,Hw〉︸ ︷︷ ︸

0

.

Both 〈v,Hw〉 and 〈Hv,w〉 simplify to 〈Hv,Hw〉, so they are equal to each other.
It’s also clear from the formula derived in Exercise 1.71 that orthogonal projection matrices are symmetric. However,
I prefer the argument used here because it’s more readily extended to orthogonal projection operators.



Exercise 1.66 Provide a formula for the matrix that maps y to its orthogonal projection onto the span of the unit
vector u ∈ RRRn.

Solution. The orthogonal projection of y onto the span of u is 〈y,u〉u. By rewriting this as uuTy, we realize
that the matrix uuT maps any vector to its orthogonal projection onto the span of u.

Exercise 1.67 Show that the trace of an orthogonal projection matrix equals the dimension of the subspace that
it projects onto.

Solution. From Exercise 1.60, we know that the trace of H equals the sum of its eigenvalues λ1, . . . , λn. Fur-
thermore, because it’s is an orthogonal projection matrix, we know that it yields the spectral decomposition

H = (1)q1q
T
1 + . . .+ (1)qmqTm + (0)qm+1q

T
m+1 + . . .+ (0)qnqTn

where q1, . . . ,qm are in the subspace that H projects onto and the rest are necessarily orthogonal to it. We see m
terms with the eigenvalue 1 and the remaining terms with the eigenvalue 0, so their sum is m which is the dimension
of the subspace that H projects onto.

Exercise 1.68 Let M be a matrix. Explain why the rank of the orthogonal projection matrix onto C(M) must be
exactly the same as the rank of M.

Solution. The equality of ranks follows from the stronger observation that the orthogonal projection matrix must
have the exact same column space as M. Every vector in C(M) gets mapped to itself by the orthogonal projection
matrix, so its column space is at least as large as C(M). However, the orthogonal projection of any vector onto
C(M) must by definition be in C(M), so the orthogonal projection matrix cannot map any vector to a result outside
of C(M).

Exercise 1.69 Let M ∈ RRRn×m and y ∈ RRRn. Explain why the Normal equation

MTMb̂ = MTy

is satisfied by the coefficient vector b̂ ∈ RRRm if and only if Mb̂ is the orthogonal projection of y onto C(M).

Solution. The orthogonal projection Mb̂ is the unique vector in C(M) with the property that y −Mb̂ ⊥ C(M).
It is equivalent to check that y −Mb̂ is orthogonal to every column v1, . . . ,vm of M. Equivalently the following
quantity should be equal to the zero vector:

MT (y −Mb̂) =

− v1 −
...

− vm −

 (y −Mb̂)

=

vT1 (y −Mb̂)
...

vTm(y −Mb̂)

 .
Setting this vector MT (y −Mb̂) equal to the zero vector results in the Normal equation.



Exercise 1.70 Suppose M ∈ RRRn×m has linearly independent columns. Provide a formula for the coefficient vector
b̂ for which Mb̂ equals the orthogonal projection of y ∈ RRRn onto C(M).

Solution. Because the columns are linearly independent, we know that MTM is invertible and thus the Normal
equation

MTMb̂ = MTy

is uniquely solved by b̂ = (MTM)−1MTy.

Exercise 1.71 Suppose M ∈ RRRn×m has linearly independent columns. Provide a formula for the orthogonal pro-
jection matrix onto C(M).

Solution. We’ve already derived in Exercise 1.70 a formula for the desired coefficient vector b̂ = (MTM)−1MTy, so
we simply plug this into Mb̂ to find the orthogonal projection of y onto C(M).

ŷ = Mb̂

= M(MTM)−1MTy

Therefore, we see that y is mapped to its orthogonal projection onto C(M) by the matrix M(MTM)−1MT .

Exercise 1.72 Show that M−M equals the orthogonal projection matrix onto the row space of M.

Solution. Let M = USVT be a singular value decomposition for which S is square and has only positive values along
its diagonal.

M−M = VS−1UTUSVT

= VVT

Exercise 1.71 indicates that the orthogonal projection matrix onto C(V) is V(VTV)−1VT which simplifies to VVT
because VTV is the identity.
It only remains to establish that C(V) is the row space of M. Letting the entries of w be the coefficients of the
linear combination,

wTM = wT (σ1u1v
T
1 + . . . σdudv

T
d )

= σ1〈w,u1〉vT1 + . . .+ σd〈w,ud〉vTd .

Any linear combination of vT1 , . . . ,v
T
d can be produced by the appropriate choice of w, but no vector outside of

their span can be produced.

Exercise 1.73 Explain why the Moore-Penrose inverse of an invertible matrix must be its inverse.

Solution. If M ∈ RRRn×n is invertible, then its row space is RRRn. Exercise 1.72 implies that M−Mw = w for
every w ∈ RRRn. M− must be the inverse according to Exercise 1.22.

Exercise 1.74 Of all coefficient vectors that satisfy the Normal equation, show that b̂ = (MTM)−MT ŷ has the
smallest norm.

Solution. From Section 1.5, we know that every solution can be represented as b̂ + w for some w in the null
space of MTM. Let MTM have spectral decomposition

MTM = σ2
1v1v

T
1 + . . .+ σ2

dvdv
T
d + (0)vd+1v

T
d+1 + . . .+ (0)vmvTm.

with positive σ2
1 , . . . , σ

2
d. It’s clear that the null space is exactly the span of {vd+1, . . . ,vm}. On the other hand,

by definition of generalized inverse, b̂ is in the span of {v1, . . . ,vd}. The squared norm of any solution b̂ + w is
‖b̂‖2 + ‖w‖2, so the solution of smallest norm is b̂.



Exercise 1.75 Show that MM−M = M.

Solution. Let M have singular value decomposition USVT where S is a square matrix with strictly positive di-
agonals. Then

MM−M = USVTV︸ ︷︷ ︸
I

S−1 UTU︸ ︷︷ ︸
I

SVT

= USVT

= M.

Exercise 1.76 For a unit vector u, express the quadratic form uTMu as a weighted average of the eigenvalues of
M ∈ RRRn×n.

Solution. Let q1, . . . ,qn be an orthonormal basis of eigenvectors for M with eigenvalues λ1, . . . , λn. We can
represent u with respect to the eigenvector basis as 〈u,q1〉q1 + . . .+ 〈u,qn〉qn.

uTMu = uTM(〈u,q1〉q1 + . . .+ 〈u,qn〉qn)

= uT (〈u,q1〉Mq1︸︷︷︸
λ1q1

+ . . .+ 〈u,qn〉Mqn︸ ︷︷ ︸
λnqn

)

= 〈u,q1〉2λ1 + . . .+ 〈u,qn〉2λn
〈u,q1〉, . . . , 〈u,qn〉 provide the coordinates of u with respect to the basis q1, . . . ,qn. Because u is a unit vector, the
sum of these squared coordinates has to be 1. Additionally, the squared coordinates are non-negative. Consequently,
we’ve expressed uTMu as a weighted average of the eigenvalues; the weights are the squared coordinates of u with
respect to the eigenvector basis.

Exercise 1.77 Identify a unit vector u that maximizes the quadratic form uTMu.

Solution. From Exercise 1.76, we know that the quadratic form equals a weighted average of the eigenvalues.
This weighted average is maximized by placing all of the weight on the largest eigenvalue, that is, by letting u be
a principal eigenvector. Such a choice of u makes uTMu equal to the largest eigenvalue.

Exercise 1.78 Given any real matrix M, show that MTM is positive semi-definite.

Solution. Exercise 1.54 established that the matrix in question is symmetric. The quadratic form

vT (MTM)v = (vTMT )(Mv)

= (Mv)T (Mv)

equals the squared norm of the vector Mv which is non-negative.

Exercise 1.79 Let M be a symmetric real matrix. Show that M is positive semi-definite if and only if its eigenvalues
are all non-negative.

Solution. From our work in Exercise 1.77, we’ve seen how to express the quadratic form as a linear combina-
tion of the eigenvalues

vTMv = 〈v,q1〉2λ1 + . . .+ 〈v,qn〉2λn.

If every eigenvalue is at least zero, then every term in this sum is non-negative so the quadratic form must be
non-negative. Conversely, if λj is negative, then the quadratic form arising from v = qj is negative, as it equals
λj .



Exercise 1.80 Let H ∈ RRRn×n be an orthogonal projection matrix, and let v ∈ RRRn. Show that the squared length
of Hv equals the quadratic form vTHv.

Solution. Because H is symmetric and idempotent,

‖Hv‖2 = (Hv)T (Hv)

= vTHTHv

= vTHv.

Exercise 1.81 Let x1, . . . ,xn be the rows of a real matrix X. Show that the quadratic form uT ( 1
nX

TX)u is equal
to the average of the squares of the coefficients of x1, . . . ,xn with respect to u.

Solution. We’ll first express the quadratic form in terms of the squared norm of a vector.

uT ( 1
nX

TX)u = 1
n (Xu)T (Xu)

= 1
n‖Xu‖2

The entries of the vector Xu are the coefficients of x1, . . . ,xn with respect to u. Its squared norm is the sum of its
squared entries, so 1

n‖Xu‖2 is the average of the squared coefficients.

Exercise 1.82 Let x1, . . . ,xn be the rows of the matrix X. Show that 1
nX

TX is the matrix whose (j, k)-entry is
the average of the product of the jth and kth coordinates of the vectors x1, . . . ,xn.

Solution. The product of the matrices

XTX =

 | |
x1 · · · xn
| |


− x1 −

...
− xn −


has as its (j, k)-entry the inner product of the jth row of XT and the kth column of X. With xi,j denoting the jth
coordinate of xi, this inner product equals

∑
i xi,jxi,k. When multiplied by 1/n, this entry is indeed the average of

the products of the coordinates. By thinking about summing over the observations, 1
nX

TX can also be understood
as an average of rank-1 matrices 1

nxix
T
i .

Exercise 1.83 Let x1, . . . ,xn be the rows of a real matrix X. Show that the average squared length 1
n

∑
i ‖xi‖2

equals the sum of the eigenvalues of 1
nX

TX.

Solution. By Parseval’s identity, the squared norm equals the sum of the squared coordinates using any basis;
let’s consider the orthonormal eigenvectors q1, . . . ,qm of 1

nX
TX, with λ1, . . . , λm denoting their eigenvalues. Recall

that Exercise 1.81 allows us to rewrite the average of squared coefficients as a quadratic form.

1
n

∑
i

‖xi‖2 = 1
n

∑
i

(〈xi,q1〉2 + . . .+ 〈xi,qm〉2)

= 1
n

∑
i

〈xi,q1〉2 + . . .+ 1
n

∑
i

〈xi,qm〉2

= qT1 ( 1
nX

TX)q1︸ ︷︷ ︸
λ1

+ . . .+ qTm( 1
nX

TX)qm︸ ︷︷ ︸
λm

Exercise 1.76 demonstrated that a quadratic form evaluated at a unit eigenvector equals the corresponding eigen-
value.



Exercise 2.1 Show that the entries of v = (v1, . . . , vn) have mean zero if and only if v is orthogonal to 1 = (1, . . . , 1).

Solution. The average of the entries is proportional to the inner product of v with 1.

1
n

∑
i

vi = 1
n 〈v,1〉

So the average is zero if and only if the inner product is zero.

Exercise 2.2 Use the Pythagorean identity to decompose the average of the squared differences between the re-
sponse values and a ∈ RRR, that is 1

n

∑
i(yi− a)2, into two terms, one of which is the empirical variance of y1, . . . , yn.

Solution. We can write
∑
i(y1 − a)2 as the squared norm ‖y − a1‖2. The vector y − a1 is the hypotenuse of

the right triangle whose other two sides are y − ȳ1 and ȳ1− a1. By the Pythagorean identity,

1
n

∑
i

(yi − a)2 = 1
n‖y − a1‖

2

= 1
n [‖y − ȳ1‖2 + ‖ȳ1− a1‖2]

= 1
n

[∑
i

(yi − ȳ)2 + n(ȳ − a)2

]
= 1

n

∑
i

(yi − ȳ)2 + (ȳ − a)2.

Exercise 2.3 Is it possible for the least-squares line’s sum of squared residuals to be greater than the least-squares
point ’s sum of squared residuals?

Solution. The set of possible prediction functions corresponding to lines {f(x) = a + bx : a, b ∈ RRR} is strictly
larger than the set of possible prediction functions corresponding to points {f(x) = a : a ∈ RRR}. A line predicts
every response value by the same number if its slope is zero. By definition, the least-squares line will use a slope
of zero if and only if that leads to the smallest possible sum of squared residuals, in which case its sum of squared
residuals would be equal to that of the least-squares point.

Exercise 2.4 The variables picture provides us with a more specific answer to the question posed in Exercise 2.3.
Use the Pythagorean identity to quantify the difference between the least-squares point’s sum of squared residuals
and the least-squares line’s sum of squared residuals.

Solution. Because ȳ1 is in the span of 1 and x, we see that the least-squares line’s residual vector y − ŷ must be
orthogonal to ŷ − ȳ1. Invoking the Pythagorean identity,

‖y − ȳ1‖2 = ‖ŷ − ȳ1‖2 + ‖y − ŷ‖2.

The least-squares point’s sum of squared residuals is larger than the least-squares line’s sum of squared residuals
by ‖ŷ − ȳ1‖2.



Exercise 2.5 Show that the correlation between two vectors equals the empirical covariance of their standardized
versions.

Solution.

ρx,y :=
σx,y
σxσy

=
(1/n)〈x− x̄1,y − ȳ1〉

(
√

1/n‖x− x̄1‖)(
√

1/n‖y − ȳ1‖)

=
〈x− x̄1,y − ȳ1〉
‖x− x̄1‖‖y − ȳ1‖

.

Exercise 2.6 Let y ∈ RRRn be a response variable and x ∈ RRRn be an explanatory variable. Consider fitting the
response variable using quadratic functions of the explanatory variable:

{fa,b,c(x) = a+ bx+ cx2 : a, b, c ∈ RRR}.

Show that the set of possible prediction vectors is a subspace of RRRn.

Solution. Let fa,b,c(x) denote the vector of predictions (fa,b,c(x1), . . . , fa,b,c(xn)). With x2 representing the vector
of squared explanatory values, an arbitrary linear combination of two arbitrary vectors of predicted values is

α1fa1,b1,c1(x) + α2fa2,b2,c2(x) = α1(a11 + b1x + c1x
2) + α2(a21 + b2x + c2x

2)

= (α1a1 + α2a2)1 + (α1b1 + α2b2)x + (α1c1 + α2c2)x2

= fα1a1+α2a2,α1b1+α2b2,α1c1+α2c2(x)

which is another possible vector of predicted values that can be achieved using a quadratic function. In fact, we
can see that the set of possible predictions is exactly the span of 1, x, and x2.

Exercise 2.7 Let y ∈ RRRn be a response variable vector and x ∈ RRRn be an explanatory variable vector. Consider
predicting the response variable by using quadratic functions of the explanatory variable:

{fa,b,c(x) = a+ bx+ cx2 : a, b, c ∈ RRR}.

Explain how to find the coefficients (â, b̂, ĉ) of the quadratic function that minimizes the sum of squared residuals.

Solution. With x2 representing the vector of squared explanatory values, we can use the design matrix

M :=

 | | |
1 x x2

| | |

 .
According to Theorem 2.4, the least-squares coefficients are (â, b̂, ĉ) = (MTM)−MTy.

Exercise 2.8 Let ŷ be the orthogonal projection of y onto C(M). Explain why (MTM)−MT ŷ must be equal to
(MTM)−MTy.

Solution. There’s an intuitive explanation for this. You can think of (MTM)−MT as the matrix that maps any
vector in RRRn to the (minimum norm) coefficients of the columns of M that lead to the orthogonal projection of
that vector onto C(M). Because the orthogonal projection of ŷ onto C(M) is exactly the same as the orthogonal
projection of y onto C(M) (namely, both are ŷ), the coefficients leading to this orthogonal projection must be the
same.



Exercise 2.9 Suppose ŷ is the orthogonal projection of y onto S, y̌ is the orthogonal projection of y onto S0 ⊆ S,
and that 1 ∈ S0. Explain why

‖ŷ − ȳ1‖2 = ‖y̌ − ȳ1‖2 + ‖ŷ − y̌‖2.

Solution. The vector y̌ is defined to be the orthogonal projection of y onto S0. However, it’s also the orthogonal
projection of ŷ onto S0 because according to Exercise 1.50, orthogonal projection onto S followed by orthogonal
projection onto S0 lands you at the exact same vector that a single orthogonal projection onto S0 does. Likewise, ȳ1
is the orthogonal projection of y̌ onto 1. Invoke the ANOVA decomposition with ŷ playing the role of the response
variable.

Exercise 3.1 Explain why the sum of the probabilities of E1 and E2 is no greater than the probability of their union.

Solution. The union of E1 and E2 is the same as the union of the disjoint sets E1 and E2/E1 (the part of E2

that isn’t in E1). With P mapping each event to its probability,

P(E1 ∪ E2) = P[E1 ∪ (E2/E1)]

= PE1 + P(E2/E1)

≤ PE1 + PE2

To understand the last step, realize that E2 can be represented as the disjoint union E2 = (E2/E1) ∪ (E2 ∩ E1).

Exercise 3.2 Let X be a random vector mapping to the complex plane with the representation X = Y + iZ where
Y and Z are random variables. Verify that EY + iEZ is the expectation of X by checking property (ii), assuming
that property (iii) holds for random variables.

Solution. Let X = Y + iZ with random variables Y and Z, and let a = b+ ic be a complex number.

E〈X, a〉 = E〈Y + iZ, b+ ic〉
= E[〈Y, ic〉+ 〈Y, b〉+ 〈iZ, b〉+ 〈iZ, ic〉]
= E[(−i)〈Y, c〉+ 〈Y, b〉+ i〈Z, b〉+ (i)(−i)︸ ︷︷ ︸

−i2=1

〈Z, c〉]

= E(〈Y, b〉+ 〈Z, c〉) + iE(〈Z, b〉 − 〈Y, c〉)
= 〈EY, b〉+ 〈EZ, c〉︸ ︷︷ ︸

〈iEZ,ic〉

+i〈EZ, b〉 − i〈EY, c〉︸ ︷︷ ︸
−〈EY,ic〉

= 〈EY + iEZ, b〉+ 〈EY + iEZ, ic〉
= 〈EY + iEZ, a〉



Exercise 3.3 Suppose x satisfies E〈X,v〉 = 〈x,v〉 and y satisfies E〈Y,v〉 = 〈y,v〉 for all v. In order to justify an
implicit claim in our definition of expectation for random vectors, verify that

E〈X + Y,v〉 = 〈x + y,v〉

for all v. In other words, verify that the expectation of a sum is indeed the sum of the expectations when all
expectations are defined by property (ii), assuming that property (iii) holds for random variables.

Solution. First, let’s verify the claim in question when X and Y map to the complex plane; we’ll represent
them by X1 + iX2 and Y1 + iY2 respectively. Based on Exercise 3.2,

E(X + Y) = E(X1 + iX2 + Y1 + iY2)

= E[(X1 + Y1) + i(X2 + Y2)]

= E(X1 + Y1) + iE(X2 + Y2)

= EX1 + EY1 + iEX2 + iEY2

= (EX1 + iEX2︸ ︷︷ ︸
EX

) + (EY1 + iEY2︸ ︷︷ ︸
EY

)

Using this result, we can prove the general case.

E〈X + Y,v〉 = E[〈X,v〉+ 〈Y,v〉]
= E〈X,v〉+ E〈Y,v〉
= 〈x,v〉+ 〈y,v〉
= 〈x + y,v〉

Exercise 3.4 For a random vector X and scalar a, show that EaX = aEX.

Solution. If X is a random vector taking values in the complex plane, then inner product is the ordinary product,
so property (ii) of our definition of expectation says that EaX = aEX.
Now we’ll use that fact to establish the more general result for random vectors.

E〈aX,v〉 = Ea〈X,v〉
= aE〈X,v〉
= a〈EX,v〉
= 〈aEX,v〉

Exercise 3.5 Suppose the random vector X maps every point in the sample space to w. Show that EX = w.

Solution.

E〈X,v〉 = E〈w,v〉
= 〈w,v〉E1Ω︸︷︷︸

1

= 〈w,v〉

where Ω represents the whole sample space and therefore has probability 1.



Exercise 3.6 Let X be a random vector and v be a non-random vector. Explain why E(X + v) = EX + v.

Solution. The random vector X + v maps any ω to X(ω) + v; we’re justified in treating v as if it’s the ran-
dom vector that maps every element of the sample space to the vector v. By property (iii), E(X + v) = EX + Ev,
and by Exercise 3.5, Ev = v.

Exercise 3.7 Suppose EX = 0. Show that the coordinate of X with respect to u has expectation 0.

Solution.

E〈X,u〉 = 〈EX︸︷︷︸
0

,u〉

= 0

Exercise 3.8 Let X be a random vector that maps to a real vector space with an inner product. Show that the
expected squared length of X equals sum of the expected squares of its coordinates with respect to any orthonormal
basis u1, . . . ,um.

Solution. This is a simple consequence of Parseval’s identity.

E‖X‖2 = E[〈X,u1〉2 + . . .+ 〈X,um〉2]

= E〈X,u1〉2 + . . .+ E〈X,um〉2

Exercise 3.9 Let X = (X1, . . . , Xn) be a random vector, v = (v1, . . . , vn) be a non-random vector, and M be an
n×m matrix. Show that

E(v + MX) = v + MEX.

Solution. From Exercise 3.6, E(v + MX) = v + EMX. Let m1, . . . ,mn be the rows of M. Putting the expectation
into each coordinate of the vector,

EMX = E

mT
1 X
...

mT
nX


=

EmT
1 X
...

EmT
nX


=

mT
1 EX
...

mT
nEX


= MEX.



Exercise 3.10 Suppose X is a discrete random vector with probability mass function p on {x1, . . . ,xn}. Show that
EX =

∑
i xip(xi).

Solution. The random vector can be represented by the sum

X(ω) = x11X(ω)=x1
+ . . .+ xn1X(ω)=xn

Taking the expectation,

EX = E[x11X=x1
+ . . .+ xn1X=xn ]

= x1 E1X=x1︸ ︷︷ ︸
p(x1)

+ . . .+ xn E1X=xn︸ ︷︷ ︸
p(xn)

by property (i) of the definition of expectation.

Exercise 3.11 Let X be a discrete random variable whose possible values are the positive integers. In particular,
suppose that P{X = k} is proportional to 1/k2 for k ∈ {1, 2, . . .}. What’s the expectation of X?

Solution. Recall that
∑∞
k=1

1
k2 = π2/6, so this distribution is well-defined. However, its expectation is

EX =

∞∑
k=1

kP{X = k}

=

∞∑
k=1

k 6
π2

1
k2

= 6
π2

∞∑
k=1

1
k

=∞.

Exercise 3.12 Suppose X is uncorrelated with each of Y1, . . . , Yn. Show that X is also uncorrelated with
a1Y1 + . . .+ anYn.

Solution.

E(X − EX)[a1Y1 + . . .+ anYn − E(a1Y1 + . . .+ anYn)] = E(X − EX)[a1Y1 + . . .+ anYn − (a1EY1 + . . .+ anEYn)]

= a1 E(X − EX)(Y1 − EY1)︸ ︷︷ ︸
0

+ . . .+ an E(X − EX)(Yn − EYn)︸ ︷︷ ︸
0

= 0

Exercise 3.13 If events E1, . . . , Em are independent (meaning that their indicator functions are independent ran-
dom variables) and each has probability q, what’s the probability that at least one of them occurs?

Solution. Each event has probability 1 − q of not occurring. The probability of an intersection of independent
events equals the product of their probabilities, so the probability that none of the events occur is (1 − q)m. The
probability that at least one occurs is 1− (1− q)m since it’s the complement of the event that none of them occur.



Exercise 3.14 Let X be a random vector and v be a non-random vector. Show that if E〈X,v〉 is real, then it’s
equal to E〈v,X〉.

Solution. We can express the first inner product as 〈X,v〉 = Y + iZ for some random variables Y and Z. If its ex-
pectation EY + iEZ is real, then EZ must be 0. The other inner product is the complex conjugate 〈v,X〉 = Y − iZ.
Its expectation EY − iEZ simplifies to EY as well.

Exercise 3.15 Let Y be a random vector with expectation µ. Find the non-random vector v that minimizes
E‖Y − v‖2.

Solution. By the bias-variance decomposition, the objective function equals ‖v − µ‖2 + E‖Y − µ‖2. The sec-
ond term doesn’t depend on v, so we can minimize the sum by taking v to be µ which makes the first term
zero.

Exercise 3.16 Explain how Exercise 2.2 is an instance of the bias-variance decomposition.

Solution. If the distribution of the random variable Y is the empirical distribution defined by y = (y1, . . . , yn), then
its expectation is ȳ. By the bias-variance decomposition,

E(Y − a)2 = (a− EY )2 + E(Y − EY )2

m
1
n

∑
i

(yi − a)2 = (a− ȳ)2 + 1
n

∑
i

(yi − ȳ)2.

Exercise 3.17 Let Y be a random vector that is an unbiased estimator for θ, that is EY = θ. If λ ∈ RRR, express
‖E(λY)− θ‖2 (which can be thought of as the squared bias of the estimator λY) in terms of λ and ‖θ‖2.

Solution.

‖E(λY)− θ‖2 = ‖λ EY︸︷︷︸
θ

−θ‖2

= ‖(λ− 1)θ‖2

= (1− λ)2‖θ‖2

Note that the factor (λ− 1)2 is equal to (1− λ)2 which is a bit more intuitive when λ ∈ [0, 1].

Exercise 3.18 Let Y be a random vector, and let λ ∈ RRR. Express E‖λY−E(λY)‖2 in terms of λ and E‖Y−EY‖2.

Solution. Factoring out λ,

E‖λY − E(λY)‖2 = E‖λ(Y − EY)‖2

= λ2E‖Y − EY‖2.



Exercise 3.19 Let Y be a random vector that is an unbiased estimator for θ ∈ RRRn. Use the bias-variance decom-
position along with your results from Exercises 3.17 and 3.18 to find an expression for λ ∈ RRR (in terms of ‖θ‖2 and
E‖Y − θ‖2) for which E‖θ − λY‖2 is as small as possible.

Solution. By the bias-variance decomposition and our previous results,

E‖θ − λY‖2 = ‖E(λY)− θ‖2 + E‖λY − E(λY)‖2

= (1− λ)2‖θ‖2 + λ2E‖Y − EY‖2.

Taking the derivative with respect to λ, and setting it to zero, we get the critical λ∗:

(1− λ∗)‖θ‖2 = λ∗E‖Y − EY‖2

is solved by λ∗ = ‖θ‖2
‖θ‖2+E‖Y−EY‖2 . Realize of course that when estimating an unknown parameter θ, we can’t

actually calculate this optimal value.

Exercise 3.20 Let XXX be a random matrix whose entries have finite expectations, and let M be a non-random
matrix. Assuming MXXX is well-defined, show that EMXXX = MEXXX. Alternatively, assuming XXXM is well-defined, show
that EXXXM = (EXXX)M.

Solution. The (i, j) entry of EMXXX is EmT
i Xj = mT

i EXj where mi represents the ith row of M and Xj represents
the jth column of XXX. This is also the (i, j) entry of MEXXX. Similarly, the (i, j) entry of EXXXM is EXT

i mj = (EXi)
Tmj

where Xi represents the ith row of XXX and mj represents the jth column of M

Exercise 3.21 Show that an alternative expression for the covariance matrix of Y is E[(Y − EY)(Y − EY)T ].

Solution. We’ll work out the matrix resulting from the multiplication then move the expectation into the ma-
trix entries.

E[(Y − EY)(Y − EY)T ] = E

Y1 − EY1

...
Yn − EYn

 [Y1 − EY1 · · · Yn − EYn
]

= E

(Y1 − EY1)(Y1 − EY1) · · · (Y1 − EY1)(Yn − EYn)
...

. . .
...

(Yn − EYn)(Y1 − EY1) · · · (Yn − EYn)(Yn − EYn)


=

E[(Y1 − EY1)(Y1 − EY1)] · · · E[(Y1 − EY1)(Yn − EYn)]
...

. . .
...

E[(Yn − EYn)(Y1 − EY1)] · · · E[(Yn − EYn)(Yn − EYn)]


The empirical covariance matrix expression in Equation 1.7 can be understood as an empirical version of this.

Exercise 3.22 Let Y be an RRRn-valued random vector, and let v ∈ RRRn. Use Exercise 3.21 to show that the covari-
ance of v + Y has the same covariance matrix as Y.

Solution.

cov (v + Y) = E[(v + Y − E(v + Y))(v + Y − E(v + Y))T ]

= E[(Y − EY)(Y − EY)T ]

= cov Y



Exercise 3.23 Let Y be a random vector with covariance matrix C. Let v be a non-random vector, and let M be
a real matrix. Show that the covariance of v + MY is MCMT .

Solution. By Exercise 3.22, cov (v + MY) = covMY.

covMY = E[(MY − EMY)(MY − EMY)T ]

= E[(MY −MEY)(MY −MEY)T ]

= E[(M(Y − EY))(M(Y − EY))T ]

= M(E[(Y − EY)(Y − EY)T ])MT

= MCMT

Exercise 3.24 Show that every covariance matrix is positive semi-definite.

Solution. To satisfy the definition, we need to show that every quadratic form is non-negative. We’ll use the
covariance expression from Exercise 3.21 and consider its quadratic form for an arbitrary vector v,

vTE[(Y − EY)(Y − EY)T ]v = E[vT (Y − EY)(Y − EY)T ]v

= E[vT (Y − EY)(Y − EY)Tv]

= E〈Y − EY,v〉2.

The expectation of a non-negative random variable has to be non-negative.

Exercise 3.25 Show that E‖X− EX‖2 = tr (cov X).

Solution.

E‖X− EX‖2 = E[(X1 − EX1)2 + . . .+ (Xn − EXn)2]

= E(X1 − EX1)2 + . . .+ E(Xn − EXn)2

These variances are the diagonals of the covariance matrix, so its trace is their sum.

Exercise 3.26 Suppose X1, . . . , Xn are uncorrelated random variables. Show that the variance of their sum equals
the sum of their variances.

Solution. Let X := (X1, . . . , Xn), and let σ2
1 , . . . , σ

2
n represent the variances. Using Exercise 3.23,

var
∑
i

Xi = var 1TX

= 1T

σ
2
1

. . .

σ2
n

1

= 1T

σ
2
1
...
σ2
n


=
∑
i

σ2
i .



Exercise 3.27 Let ε be a random vector with expectation 0 and covariance matrix σ2I. Let v be a non-random
vector, and let H be an orthogonal projection matrix. Find the covariance matrix of H(v + ε).

Solution. Distribute the matrix multiplication to get Hv + Hε. According to Exercise 3.23, the covariance is

H(σ2I)HT = σ2HHT

= σ2H

by symmetry and idempotence of orthogonal projection matrices.

Exercise 3.28 Let X have expectation µX and Y have expectation µY. Show that the expected inner product
between the centered vectors X − µX and Y − µY is the same as the expected inner product when only one of
them is centered.

Solution.

E〈X− µX,Y − µY〉 = E〈X− µX,Y〉 − E〈X− µX,µY〉
= E〈X− µX,Y〉 − 〈EX− µX︸ ︷︷ ︸

0

,µY〉

= E〈X− µX,Y〉

The same argument works for Y − µY if you keep Exercise 3.14 in mind.

Exercise 3.29 Use Exercise 3.28 to observe that

〈x− x̄1,y〉 = 〈x− x̄1,y − ȳ1〉.

Solution. Let the joint distribution of (X,Y ) be the empirical distribution of (x1, y1), . . . , (xn, yn).

〈x− x̄1,y〉 = n 1
n

∑
i

[(xi − x̄)yi]

= nE[(X − EX)Y ]

= nE[(X − EX)(Y − EY )]

= n 1
n

∑
i

[(xi − x̄)(yi − ȳ)]

= 〈x− x̄1,y − ȳ1〉

Exercise 3.30 Let X be a random vector mapping to a real vector space, and let v be a non-random vector. Show
that the variance of the coordinate of X with respect to u is the same as the variance of the coordinate of X + v
with respect to u.

Solution. The difference between 〈X + v,u〉 and 〈X,u〉 is 〈v,u〉 which is non-random. By Exercise 3.23, we
can conclude that they must therefore have the same variance.



Exercise 3.31 If X has expectation µ, find the expectation of the centered version X− µ.

Solution.

E(X− µ) = EX︸︷︷︸
µ

−µ

= 0

Exercise 3.32 Let M be a positive definite matrix. Based on Exercises 1.24 and 1.58, explain why the inverse of
the square root of M is the same as the square root of the inverse of M.

Solution. To find the square root of a positive semi-definite matrix, you replace the eigenvalues by their square
roots. To find the inverse of an invertible symmetric matrix, you replace the eigenvalues by their reciprocals. No
matter which order you do these two operations in, you end up with the same matrix:

1√
λ1

q1q
T
1 + . . .+

1√
λn

qnqTn

where q1, . . . ,qn are eigenvectors of M with eigenvalues λ1, . . . , λn.

Exercise 3.33 Let Y have expectation µ and covariance matrix C. Find the expectation and covariance of
C−1/2(Y − µ).

Solution. The random vector Y − µ has expectation zero, so based on Exercise 3.9, C−1/2(Y − µ) has expec-
tation C−1/20 = 0. For the covariance, we apply the formula from Exercise 3.23 to get

cov [C−1/2(Y − µ)] = C−1/2C(C−1/2)T

= C−1/2C1/2︸ ︷︷ ︸
I

C1/2C−1/2︸ ︷︷ ︸
I

= I.

Exercise 3.34 If Y has expectation µ and a positive definite covariance matrix C, find the expected squared
Mahalanobis distance from Y to its own distribution.

Solution. Let Z := C−1/2(Y − µ) represent the standardized version of Y, and let (Z1, . . . , Zn) represent its
coordinates. Notice that the squared Mahalanobis distance from Y to its distribution is exactly the squared norm
of the standardized version.

E‖C−1/2[Y − µ]‖2 = E‖Z‖2

= EZ2
1 + . . .+ EZ2

n

= varZ1︸ ︷︷ ︸
1

+ . . .+ varZn︸ ︷︷ ︸
1

= n

The expected squared Mahalanobis distance is the dimension of the vector space that Y inhabits.



Exercise 3.35 Let H be the orthogonal projection matrix onto a d-dimensional subspace S ⊆ RRRn, and let Y be a
random vector with covariance matrix σ2I. Show that

E‖HY‖2 = dσ2 + ‖Hµ‖2.

Solution. By comparison to Equation 3.1, all that remains is to verify that the trace of Hσ2I is dσ2.

tr [Hσ2I] = σ2trH
= dσ2

because according to Exercise 1.67 the trace of an orthogonal projection matrix equals the dimension of the subspace
that it projects onto.

Exercise 3.36 Let X1, . . . , Xn all have expectation µX , and let Y1, . . . , Yn all have expectation µY . Suppose
cov(Xi, Yj) equals σX,Y if i = j and zero otherwise. Find the expectation of∑

i

(Xi − X̄)(Yi − Y ).

Solution. Let Y := (Y1, . . . , Yn) and X := (X1, . . . , Xn). The matrix

(X− µX1)(Y − µY 1)T =

(X1 − µX)(Y1 − µY ) · · · (X1 − µX)(Yn − µY )
...

. . .
...

(Xn − µX)(Y1 − µY ) · · · (Xn − µX)(Yn − µY )


has expectation σX,Y I.
Let J be the orthogonal projection matrix onto the span of {1}. We’ll use the same trace cyclic permutation trick
that was advantageous for evaluating expected quadratic forms.

E
∑
i

(Xi − X̄)(Yi − Y ) = E(Y − Y 1)T (X− X̄1)

= E[(I− J)Y]T [(I− J)X]

= E[(I− J)(Y − µY 1)]T [(I− J)(X− µX1)]

= E(Y − µY 1)T (I− J)(X− µX1)

= Etr [(Y − µY 1)T (I− J)(X− µX1)]

= tr [(I− J)E(X− µX1)(Y − µY 1)T︸ ︷︷ ︸
σX,Y I

]

= (n− 1)σX,Y

Exercise 4.1 Suppose that Y1, . . . , Yn satisfy a location model

Yi = α+ εi.

Show that the least-squares point (Theorem 2.1) is an unbiased estimator for α.

Solution. Remember that the least-squares point is simply the average of the response values. The expectation is

EY = E( 1
n

∑
i

Yi)

= 1
n

∑
i

EYi︸︷︷︸
α

= α.



Exercise 4.2 Suppose that Y1, . . . , Yn are uncorrelated and all have the same variance σ2. What’s the variance of
the least-squares point?

Solution. The variance of a constant times a random variable equals the square of that constant times the variance
of the random variable (Exercise 3.23). Furthermore, the variance of a sum of uncorrelated random variables equals
the sum of the variances (Exercise 3.26).

varY = var ( 1
n

∑
i

Yi)

= 1
n2

∑
i

varYi︸ ︷︷ ︸
σ2

= 1
n2 (nσ2)

=
σ2

n
.

Exercise 4.3 Let x1, . . . , xn ∈ RRR be values of an explanatory variable, and suppose that the response variable
Y1, . . . , Yn satisfies a simple linear model

Yi = α+ β(xi − x̄) + εi.

Assuming x1, . . . , xn are all the same number, show that the coefficients α̂ and β̂ in the least-squares line y =
α̂+ β̂(x− x̄) are unbiased estimators for α and β.

Solution. The least-squares line has α̂ = Y , and its expectation is

EY = E( 1
n

∑
i

Yi)

= 1
n

∑
i

EYi︸︷︷︸
α+β(xi−x̄)

= α+ β 1
n

∑
i

(xi − x̄)︸ ︷︷ ︸
0

= α.

The other coefficient’s expectation is

Eβ̂ = E
〈x− x̄1,Y − Y 1〉
‖x− x̄1‖2

=
〈x− x̄1,EY − EY 1〉

‖x− x̄1‖2

=
〈x− x̄1, [α1 + β(x− x̄1)]− α1〉

‖x− x̄1‖2

= β
〈x− x̄1,x− x̄1〉
‖x− x̄1‖2

= β.



Exercise 4.4 Suppose Y1, . . . , Yn are uncorrelated and all have the same variance σ2. If x1, . . . , xn are values
of an explanatory variable, what’s the covariance matrix of the coefficients α̂ and β̂ in the least-squares line
y = α̂+ β̂(x− x̄)?

Solution. The variance of â works out to be σ2

n , exactly as in Exercise 4.2. The variance of b̂ is

var b̂ = var
1
n 〈x− x̄1,Y〉

σ2
x

= 1
n2σ4

x
cov (x− x̄1)TY

= 1
n2σ4

x
(x− x̄1)Tσ2I(x− x̄1)

=
σ2

n2σ4
x

‖x− x̄1‖2︸ ︷︷ ︸
nσ2

x

=
σ2

nσ2
x

unless σ2
x = 0 in which case β̂ ≡ 0 has variance 0. These two variances are the diagonals of the covariance matrix.

The off-diagonals are equal to the covariance between â and b̂. It will be important to realize that the average of
the entries of EY is

1
n1TEY = 1

n1T [α1− β(x− x̄1)]

= α− β(x̄− x̄)

= α.

Thus Y − α can be rewritten as 1
n1T (Y − EY).

E(Y − α)

(
1
n 〈x−x̄1,Y〉

σ2
x

)
= E 1

n2σ2
x
1T (Y − EY)YT (x− x̄1)

= 1
n2σ2

x
1T [E(Y − EY)YT︸ ︷︷ ︸

σ2I

](x− x̄1)

= σ2

nσ2
x

1
n1T (x− x̄1)︸ ︷︷ ︸

x̄−x̄

= 0

Exercise 4.5 Suppose that a response variable satisfies a simple linear model of an explanatory variable and that
it is predicted by the least-squares line. Which is larger: the sum of squared errors or the sum of squared residuals?
Base your answer on the definition of the least-squares line, and explain.

Solution. The sum of squared errors is the sum of squared differences between the response values and the true
line, while the sum of squared residuals is the sum of squared differences between the points and the least-squares
line. The least-squares line is, by definition, the one with the smallest possible sum of squared differences from the
points, so the sum of squared residuals can’t possibly be larger than the sum of squared errors.

Exercise 4.6 The variables picture provides us with a more specific answer to the question posed in Exercise 4.5.
Use the Pythagorean identity to quantify the difference between the sum of squared errors and the sum of squared
residuals.

Solution. The error vector forms the hypotenuse of a right triangle whose other sides are Ŷ−EY and the residual
vector Y − Ŷ. Invoking the Pythagorean identity,

‖ε‖2 = ‖Y − Ŷ‖2 + ‖Ŷ − EY‖2.

The sum of squared errors is larger than the sum of squared residuals by ‖Ŷ − EY‖2.



Exercise 4.7 Let (x
(1)
1 , . . . , x

(m)
1 ), . . . , (x

(1)
n , . . . , x

(m)
n ) ∈ RRRm be n observations of m explanatory variables, and

suppose that the response variable Y1, . . . , Yn satisfies a multiple linear model

Yi = α+ β1(x(1) − x̄(1)) + . . .+ βm(x(m) − x̄(m)) + εi.

Assuming the explanatory variables’ empirical covariance matrix Σ is full rank, show that the coefficients α̂, β̂1, . . . , β̂m
in the least-squares hyperplane y = α̂+β̂1(x(1)−x̄(1))+. . .+β̂m(x(m)−x̄(m)) are unbiased estimators for α, β1, . . . , βm.

Solution. The least-squares hyperplane has α̂ = Y , which can be expressed as

Y = 1
n

∑
i

Yi

= 1
n

∑
i

[α+ β1(x
(1)
i − x̄

(1)) + . . .+ βm(x
(m)
i − x̄(m)) + εi]

= α+ β1
1
n

∑
i

(x
(1)
i − x̄

(1))︸ ︷︷ ︸
0

+ . . .+ βm
1
n

∑
i

(x
(m)
i − x̄(m))︸ ︷︷ ︸

0

+ 1
n

∑
i

εi

= α+ 1
n

∑
i

εi.

Its expectation is

EY = α+ 1
n

∑
i

Eεi︸︷︷︸
0

= α.

The vector of empirical covariances of Y with x(1), . . . ,x(m) can be expressed as 1
n X̃

TY where X̃ is the centered
version of the explanatory data matrix. Substituting this representation into the formula from Theorem 2.3,

Eβ̂ = EΣ−1 1
n X̃

TY

= Σ−1 1
n X̃

TEY

= Σ−1 1
n X̃

T (α1 + X̃β)

= Σ−1(αn X̃T1︸︷︷︸
0

+ 1
n X̃

T X̃︸ ︷︷ ︸
Σ

β)

= Σ−1Σβ

= β.

Exercise 4.8 Suppose Y1, . . . , Yn are uncorrelated and all have the same variance σ2. With (x
(1)
1 , . . . , x

(m)
1 ), . . . , (x

(1)
n , . . . , x

(m)
n ) ∈

RRRm as n observations of m explanatory variables, what’s the variance of α̂ and the covariance matrix of β̂ =
(β̂1, . . . , β̂m) in the least-squares hyperplane y = α̂+ β̂1(x(1) − x̄(1)) + . . .+ β̂m(x(m) − x̄(m))?

Solution. Remember that α̂ = Y has the representation α + 1
n

∑
i εi. Its variance once again works out to be

σ2

n . The covariance matrix of β̂ is

cov β̂ = cov Σ− 1
n X̃

TY

= Σ− 1
n X̃

T (σ2I)[Σ− 1
n X̃

T ]T

= σ2

n Σ−( 1
n X̃

T X̃︸ ︷︷ ︸
Σ

)Σ−

= σ2

n Σ−

by Exercise 1.75.



Exercise 4.9 Suppose Y1, . . . , Yn are uncorrelated and all have the same variance σ2. With (x
(1)
1 , . . . , x

(m)
1 ), . . . , (x

(1)
n , . . . , x

(m)
n ) ∈

RRRm as n observations of m explanatory variables, show that α̂ is uncorrelated with every β̂1, . . . , β̂m in the least-
squares hyperplane.

Solution. Let X̃ be the centered version of the explanatory data matrix, and let Σ−j be the jth row of the generalized
inverse of its empirical covariance matrix (as a column vector). Borrowing tricks from Exercise 4.4, the covariance

between α̂ and β̂j is

E(Y − α)((Σ−j )T 1
n X̃

TY) = E 1
n2 1T (Y − EY)YT X̃Σ−j

= 1
n2 1T [E(Y − EY)YT︸ ︷︷ ︸

covY=σ2I

]X̃Σ−j

= σ2

n
1
n1T X̃︸ ︷︷ ︸

0T

Σ−j

= 0.

Exercise 4.10 Let x1, . . . ,xn ∈ RRRm be n observations of m explanatory variables, and suppose that the response
variable Y1, . . . , Yn satisfies a linear model

Yi = γ1g1(xi) + . . .+ γdgd(xi) + εi.

Assuming the columns of the design matrix are linearly independent, show that the coefficients γ̂1, . . . , γ̂d in the
least-squares linear fit y = γ̂1g1(x) + . . .+ γ̂dgd(x) are unbiased estimators for γ1, . . . , γd.

Solution. Let M represent the design matrix

M :=

g1(x1) · · · gd(x1)
...

. . .
...

g1(xn) · · · gd(xn)

 .
The expectation of Y = Mγ + ε is Mγ. Using the formula for the least-squares coefficients provided in Theorem
2.4,

Eγ̂ = E(MTM)−1MTY

= (MTM)−1MT EY︸︷︷︸
Mγ

= (MTM)−1(MTM)γ

= γ.

(We know that MTM is invertible because the columns of M are assumed to be linearly independent – see Exercise
1.63.)



Exercise 4.11 Suppose Y1, . . . , Yn are uncorrelated and all have the same variance σ2. With x1, . . . ,xn ∈ RRRm as n
observations of m explanatory variables, what’s the covariance matrix of γ̂ = (γ̂1, . . . , γ̂d) in the least-squares linear
fit y = γ̂1g1(x) + . . .+ γ̂dgd(x)?

Solution. The covariance matrix of γ̂ is

cov γ̂ = cov (MTM)−MTY

= (MTM)−MT (σ2I)[(MTM)−MT ]T

= σ2(MTM)−MTM(MTM)−

= σ2(MTM)−

by Exercise 1.75.

Exercise 4.12 Assume the columns of M are linearly independent. Suppose Y = Mγ+ε where ε is a random vector
with mean 0 and covariance σ2I. Let γ̂ := (MTM)−1MTY denote the least-squares estimator for the coefficients.
Suppose an alternative estimator γ̌ := LY is also unbiased for γ. Use the Gauss-Markov theorem to show that
E(γ̂ − γ)TL(γ̂ − γ) ≤ E(γ̌ − γ)TL(γ̌ − γ) for every positive semi-definite matrix L.

Solution. First, consider the claim of the Gauss-Markov theorem: the variance of γ̂Tv is no greater than the
variance of γ̌Tv. An alternative expression for the squared deviation of γ̂Tv from its mean is

(γ̂Tv − Eγ̂Tv)2 = (γ̂Tv − γTv)2

= [(γ̂ − γ)Tv][(γ̂ − γ)Tv]

= (γ̂ − γ)TvvT (γ̂ − γ),

and likewise for γ̌. The expected squared deviation is the variance, so Gauss-Markov tells us that E(γ̂−γ)TvvT (γ̂−
γ) is no greater than (γ̌ − γ)TvvT (γ̌ − γ) for every v.
With a spectral decomposition for L,

(γ̂ − γ)TL(γ̂ − γ) = (γ̂ − γ)T (λ1q1q
T
1 + . . .+ λdqdq

T
d )(γ̂ − γ)

= λ1(γ̂ − γ)Tq1q
T
1 (γ̂ − γ) + . . .+ λd(γ̂ − γ)Tqdq

T
d )(γ̂ − γ).

Each eigenvalue is non-negative, so each term is no greater than the corresponding expression with γ̌ in place of
γ̂.



Exercise 4.13 Suppose Y = Mγ + ε with Eε = 0, and let γ̂ be coefficients of least-squares linear regression
estimators for the correctly specified model. If a new explanatory observation vn+1 is in the row space of M,

and Yn+1 = vTn+1γ + εn+1 with Eεn+1 = 0, show that the expectation of the predictor Ŷn+1 = vTn+1γ̂ equals the
expectation of Yn+1 regardless of whether or not M has full rank.

Solution. Let vTn+1 = wTM. The expectation of the new response value can be represented as the w linear
combination of the expectations of previous response values:

EYn+1 = vTn+1γ

= wTMγ

= wTEY.

The predictor can be written as the same linear combination of the previous predicted values:

Ŷn+1 = vTn+1γ̂

= wTMγ̂

= wT Ŷ.

Because Ŷ is unbiased for EY, we have

EŶn+1 = wTEŶ

= wTEY

which is the same expectation we found for EYn+1.

Exercise 4.14 Let x = (x1, . . . , xn) and z = (z1, . . . , zn) be explanatory variables such that x = az for some c ∈ RRR.
Assume Y = (Y1, . . . , Yn) satisfy Y = b1x + b2z + ε for some b1, b2 ∈ RRR and Eε = 0. Argue that the derived
parameter c := ab1 + b2 can be estimated.

Solution. The expectation of the response variable is

EY = b1x + b2z

= b1az + b2z

= (ab1 + b2)z

= cz.

Every possible value of a implies a different expectation for the response variable, so it can be estimated. In fact

the orthogonal projection’s coefficient 〈Y,z〉‖z‖2 is unbiased based on Exercise 4.10.

Exercise 4.15 Suppose Y = Mβ + ε with cov ε = σ2In, and let Ŷ be the orthogonal projection of Y onto C(M).

Find E‖Y − Ŷ‖2, the expected sum of squared residuals.

Solution. We’ll let H be the orthogonal projection matrix onto M, and use Exercise 3.35 along with Exercises
1.67 and 1.68.

E‖Y − Ŷ‖2 = ‖(I−H)ε‖2

= tr [(I−H)σ2I]
= σ2(n− rankM)



Exercise 4.16 Suppose the predictor Ŷn+1 is a function of Y1, . . . , Yn which are independent of Yn+1. Show that

E(Yn+1 − Ŷn+1)2 = var Yn+1 + E(Ŷn+1 − EYn+1)2.

Solution.

E(Yn+1 − Ŷn+1)2 = E[(Yn+1 − EYn+1)− (Ŷn+1 − EYn+1)]2

= E(Yn+1 − EYn+1)2 − 2E(Yn+1 − EYn+1)(Ŷn+1 − EYn+1) + E(Ŷn+1 − EYn+1)2

= var Yn+1 − 2E(Yn+1 − EYn+1)︸ ︷︷ ︸
0

E(Ŷn+1 − EYn+1) + E(Ŷn+1 − EYn+1)2

= var Yn+1 + E(Ŷn+1 − EYn+1)2

Exercise 4.17 Suppose Y1, . . . , Yn are uncorrelated and all have the same variance σ2. Let x1, . . . ,xn ∈ RRRm be
n observations of m explanatory variables, and assume their empirical covariance matrix Σ has full rank. Let
β̂ = (β̂1, . . . , β̂m) be the coefficients of the explanatory variables in the least-squares hyperplane y = α̂+ β̂1(x(1) −
x̄(1)) + . . .+ β̂m(x(m) − x̄(m)). Find E‖β̂ − Eβ̂‖2 in terms of σ2, n, and the eigenvalues of Σ.

Solution. The “variance” of any random vector is the trace of its covariance matrix (Exercise 3.25).

E‖β̂ − Eβ̂‖2 = tr cov β̂

= σ2

n tr Σ−1

= σ2

n (λ−1
1 + . . .+ λ−1

m )

where λ1, . . . , λm are the eigenvalues of Σ.

Exercise 4.18 Based on Exercise 4.12, the Gauss-Markov theorem implies that the least-squares coefficient vector
has the smallest possible expected squared estimation error among all random vectors that are both linear func-
tions of the response and unbiased for its expectation. However, Equation 4.1 identified a < 1 such that a times
the least-squares coefficients of the explanatory variables has smaller expected squared estimation error than the
least-squares coefficient vector do; explain why this doesn’t contradict the Gauss-Markov theorem.

Solution. Let’s check the conditions of the Gauss-Markov theorem. It applies to linear functions of the response Y
that are unbiased for EY. Because β̂ is linear in Y, so is aβ̂. However, it’s biased ; its expectation is aβ 6= β, so
Gauss-Markov doesn’t apply.

Exercise 5.1 Find the probability density function for a standard Normal random vector on RRRn.

Solution. Let Z be an RRRn-valued standard Normal random vector. By independence, its pdf equals the prod-
uct of the individual pdfs of its coordinates (Z1, . . . , Zn).

f(z) =
∏
i

1√
2π
e−z

2
i /2

= 1
(2π)n/2

e−(z21+...+z2n)/2

= 1
(2π)n/2

e−‖z‖
2/2



Exercise 5.2 For standard Normal random vectors Z1 and Z2, suppose M1Z1 and M2Z2 have the same covariance.
Show that they have the same distribution.

Solution. From Exercise 3.23, we calculate the covariances to be M1MT
1 and M2MT

2 .
Suppose M1 has the singular value decomposition USVT1 . Then the spectral decomposition of M1MT

1 is USUT . By
the assumption that the covariances are equal, we see that M2MT

2 must also be equal to USUT . Thus, a singular
value decomposition of M2 has the same matrix U on the left and the same matrix of singular values; we’ll write
M2 = USVT2 .
We need to compare the distributions of USVT1 Z1 and USVT2 Z2. The entries of VT1 Z1 are the coordinates of Z1 with
respect to the orthonormal columns of V, so they’re iid standard Normal according to our discussion in Section 5.1.
Likewise, the entries of VT2 Z2 are standard Normal, so we can conclude that the two random vectors in question
have the same distribution.

Exercise 5.3 Show that if X is a Normal random vector, then so is MX+v where M is a real matrix and v is a vector.

Solution. With µ and C representing the expectation and covariance of X, the transformed random vector is

MX + v = M(C1/2Z + µ) + v

= [MC1/2]Z + [Mµ + v]

with Z standard Normal. This fits the definition of a Normal random vector.

Exercise 5.4 Show that if X1 and X2 are Normal random vectors, then so is X1 + X2.

Solution. Let X1 ∼ N(µ1,C1) and X2 ∼ N(µ2,C2). With standard Normal Z1 and Z2, we can represent the
sum as

X1 + X2 = (C1/2
1 Z1 + µ1) + (C1/2

2 Z2 + µ2)

=
[
C1/2

1 C1/2
2

] [
Z1

Z2

]
+ [µ1 + µ2].

We’re almost finished, but consider carefully the vector

[
Z1

Z2

]
that has the entries of Z1 stacked on top of the entries

of Z2. We can’t assume that the entries of Z1 are independent of the entries of Z2, so the stacked vector isn’t

necessarily standard Normal. However, with C representing the covariance matrix of

[
Z1

Z2

]
and with Z a standard

Normal random vector of the same size as

[
Z1

Z2

]
, then we can rewrite the expression as

[
C1/2

1 C1/2
2

]
C1/2Z + [µ1 + µ2]

which fits the definition of a Normal random vector.



Exercise 5.5 If two random variables are multivariate Normal and are uncorrelated with each other, then they
are independent; one can verify that their joint density factors into a product of their marginal densities. However,
without multivariate Normality, uncorrelated doesn’t necessarily imply independent. Construct a pair of Normal
random variables that are uncorrelated but not independent.

Solution. Let Z ∼ N(0, 1). Independently of Z, let B take values −1 and 1 each with probability. Finally,
define Y := BZ. By inspecting the cdf of Y ,

P(Y ≤ t) = P(B = 1 ∩ Z ≤ t) + P(B = −1 ∩ Z ≥ t)
= P(B = 1)P(Z ≤ t) + P(B = −1)P(Z ≥ −t)
= P(B = 1)P(Z ≤ t) + P(B = −1)P(Z ≥ −t)︸ ︷︷ ︸

P(Z≤t)

= [P(B = 1) + P(B = −1)]︸ ︷︷ ︸
1

P(Z ≤ t)

we see that it is also standard Normal as it has the same cdf as Z. If you learn that Z = z, you know that Y is
either z or −z, so Z and Y clearly aren’t independent. However, their correlation is

EZY = EZ(BZ)

= (EB︸︷︷︸
0

)(EZ2)

= 0.

Exercise 5.6 Find the expectation of W ∼ χ2
k.

Solution. W can be represented as the squared norm of a standard Normal random vector. Its expectation is
the same as the expected squared norm of any standardized random vector Z on RRRk:

E‖Z‖2 = E(Z2
1 + . . .+ Z2

k)

= EZ2
1 + . . .+ EZ2

k

= varZ1︸ ︷︷ ︸
1

+ . . .+ varZk︸ ︷︷ ︸
1

= k.

Exercise 5.7 If Y ∼ N(µ,C) is an RRRn-valued random vector, what’s the distribution of the squared Mahalanobis
distance of Y from its own distribution?

Solution. Allow for degenerate distributions by using the approach described at the end of Section 3.5. Let
Z := C−1/2(Y − µ) ∼ N(0, I) represent the standardized version in RRRrankC. The squared Mahalanobis distance
from Y to N(µ,C) is

‖C−1/2[Y − µ]‖2 = ‖C−1/2[(C1/2Z + µ)− µ]‖2

= ‖Z‖2

∼ χ2
rankC.



Exercise 5.8 Let Z be an RRRn-valued random vector with the standard Normal distribution, and let H be an
orthogonal projection matrix. Find the distribution of ‖HZ‖2.

Solution. Let u1, . . . ,un be an orthonormal basis with u1, . . . ,urankH spanning the space that H projects onto.
Because the orthogonal projection is

HZ = 〈Z,u1〉u1 + . . .+ 〈Z,urankH〉urankH

its squared length is the sum of its squared coordinates

‖HZ‖2 = 〈Z,u1〉2 + . . .+ 〈Z,urankH〉2.

These coordinates are independent standard Normal random variables, according to the discussion in Section 5.1,
so their sum of squares has distribution χ2

rankH.

Exercise 5.9 Let ε ∼ N(0, σ2I). If H is an orthogonal projection matrix and u is a unit vector orthogonal to C(H),
find the distribution of

〈ε,u〉
‖Hε‖/

√
rankH

.

Solution. First, we’ll divide the numerator and the denominator by σ to connect this ratio to the standard Normal
random vector ε/σ.

〈ε,u〉
‖Hε‖/

√
rankH

=
〈(ε/σ),u〉

‖H(ε/σ)‖/
√

rankH

Let u1, . . . ,un be an orthonormal basis with u1, . . . ,urankH spanning C(H) and urankH+1 equal to u. The numerator
is simply the coordinate of ε/σ with respect to u, so it’s a standard Normal random variable. From Exercise 5.8,
‖H(ε/σ)‖2 ∼ χ2

rankH. Because the numerator and the denominator are functions of distinct coordinates, they’re
independent of each other, so the random variable has the trankH distribution.

Exercise 5.10 Let ε ∼ N(0, σ2I). If H is an orthogonal projection matrix and u is a unit vector orthogonal to
C(H), and a ∈ RRR, find the distribution of

a+ 〈ε,u〉
‖Hε‖/

√
rankH

.

Solution. First, we’ll divide the numerator and the denominator by σ.

a+ 〈ε,u〉
‖Hε‖/

√
rankH

=
a/σ + 〈(ε/σ),u〉
‖H(ε/σ)‖/

√
rankH

As in Exercise 5.9, the second term in the numerator is standard Normal, the denominator is χ2
rankH divided by

its degrees of freedom, and the numerator and denominator are independent. By the definition of non-central
t-distributions, the ratio’s distribution is trankH,a/σ.

Exercise 5.11 Let T ∼ tk. What’s the distribution of T 2?

Solution. From the definition of tk, we can represent T using independent Z ∼ N(0, 1) and V ∼ χ2
k.

T 2 =

(
Z√
V/k

)2

=
Z2/1

V/k

Because Z2 ∼ χ2
1, this expression matches the definition of the f1,k distribution.



Exercise 5.12 Let ε ∼ N(0, σ2I), and let H1 and H2 be orthogonal projection matrices onto two subspaces that

are orthogonal to each other. Find the distribution of ‖H1ε‖2/rankH1

‖H2ε‖2/rankH2
.

Solution. We can divide both the numerator and the denominator by σ2 to produce random variables whose
distributions we know from Exercise 5.8.

‖H1ε‖2/rankH1

‖H2ε‖2/rankH2
=
‖H1(ε/σ)‖2/rankH1

‖H2(ε/σ)‖2/rankH2

The numerator is a χ2
rankH1

-distributed random variable divided by its degrees of freedom, while the denominator
is a χ2

rankH2
-distributed random variable divided by its degrees of freedom. Because the subspaces are orthogonal,

we know that the two orthogonal projections are independent of each other, allowing us to conclude that the ratio
matches the definition of frankH1,rankH2

.

Exercise 5.13 Let ε ∼ N(0, σ2I), and let H1 and H2 be orthogonal projection matrices onto two subspaces that

are orthogonal to each other. Find the distribution of ‖v+H1ε‖2/rankH1

‖H2ε‖2/rankH2
, where v is a non-random vector.

Solution. Divide both the numerator and the denominator by σ2.

‖v + H1ε‖2/rankH1

‖H2ε‖2/rankH2
=
‖ 1
σv + H1(ε/σ)‖2/rankH1

‖H2(ε/σ)‖2/rankH2

As in Exercise 5.12, the denominator is χ2
rankH2

-distributed and is independent of the numerator. This time the
numerator is a non-central χ2 random variable divided by its degrees of freedom with non-centrality parameter
‖ 1
σv‖2 = ‖v‖2/σ2. Thus the ratio’s distribution matches the definition of frankH1,rankH2,‖v‖2/σ2 .

Exercise 6.1 Let xi represent the explanatory value(s) of the ith observation. Consider modeling the response
variable by

Yi = fθ(xi) + εi

with ε1, . . . , εn
iid∼ N(0, σ2) and θ ∈ Θ indexing a set of possible functions. (Notice that this form is far more general

than the linear model with iid Normal errors.) Show that the maximum likelihood estimator for θ is precisely the
parameter value that minimizes the sum of squared residuals.

Solution. The response values have distribution Yi ∼ N(fθ(xi), σ
2) and are independent of each other. Because of

independence, the overall likelihood L(θ; Y) is the product of the individual observations’ likelihoods.

L(θ; Y) =

n∏
i=1

1√
2πσ2

e−
1

2σ2
(Yi−fθ(xi))

2

=

(
1

2πσ2

)n/2
e−

1
2σ2

∑n
i=1(Yi−fθ(xi))

2

The parameter θ only appears in the sum of squared residuals
∑n
i=1(Yi − fθ(xi))

2. The smaller the sum of
squared residuals is, the larger the likelihood is, so the “least-squares parameter” is exactly the maximum likelihood
estimator. Notice that this equivalence doesn’t depend on the value of σ and that it holds even if σ is unknown.



Exercise 6.2 Suppose Y = Mγ + ε with error vector ε ∼ N(0, σ2I). If Ŷ is the least-squares linear regression’s

prediction vector for design matrix M, what’s the distribution of ‖Y − Ŷ‖2/σ2?

Solution. We saw in Chapter 4 that the least-squares residual vector Y − Ŷ is the orthogonal projection of ε
onto C(M)⊥ which has dimension n − rankM. The standardized version ε/σ is standard Normal, so according to
Exercise 5.8,

‖Y − Ŷ‖2

σ2
= ‖(I−H)(ε/σ)‖2

∼ χ2
n−rankM

where H represents the orthogonal projection matrix onto C(M).

Exercise 6.3 Let X̃ ∈ RRRn×m be a centered explanatory data matrix with full rank. Assume

Y = α+ X̃β + ε

with ε1, . . . , εn
iid∼ N(0, σ2). Write the standardized version of the least-squares slope β̂j . What is its distribution?

Solution. The distribution of β̂j is Normal because its a linear transformation of Y which is Normal. Its ex-

pectation equals the jth entry of Eβ̂ = β, and its variance equals the jth diagonal of cov β̂ = σ2

n �−1:

β̂j ∼ N(βj ,
σ2

n �−1
jj ).

The standardized version is

β̂j − βj
σ√
n

√
�−1
jj

∼ N(0, 1).

Exercise 6.4 Let X̃ ∈ RRRn×m be a centered explanatory data matrix with full rank. Assume

Y = α+ X̃β + ε

with ε1, . . . , εn
iid∼ N(0, σ2). Devise a t-distributed random variable involving the least-squares slope β̂j .

Solution. From Exercise 6.3, the standardized version is
β̂j−βj
σ√
n

√
�−1
jj

∼ N(0, 1). Exercise 2.8 implies that β̂ is a

function of Hε, so the ratio trick allows us to substitute σ̂ for σ to derive

β̂j − βj
σ̂√
n

√
�−1
jj

∼ tn−m−1.



Exercise 6.5 Let X̃ ∈ RRRn×m be a centered explanatory data matrix with full rank. Assume

Y = α+ X̃β + ε

with ε1, . . . , εn
iid∼ N(0, σ2). Devise a 95% confidence interval for βj .

Solution. From Exercise 6.4,
β̂j−βj
σ̂√
n

√
�−1
jj

∼ tn−m−1, so

P

−τ−1
n−m−1(.975) ≤ βj − β̂j

σ̂√
n

√
�−1
jj

≤ τ−1
n−m−1(.975)

 = .95.

The event can be rewritten as

β̂j − τ−1
n−m−1(.975) σ̂√

n

√
�−1
jj ≤ βj ≤ β̂j + τ−1

n−m−1(.975) σ̂√
n

√
�−1
jj

which means that β̂j ± τ−1
n−m−1(.975) σ̂√

n

√
�−1
jj is a 95% confidence interval for βj .

Exercise 6.6 Let X̃ ∈ RRRn×m be a centered explanatory data matrix with full rank. Assume

Y = α+ X̃β + ε

with ε1, . . . , εn
iid∼ N(0, σ2). Devise a test statistic Tj for the null hypothesis that βj = 0.

Solution. From Exercise 6.4,
β̂j−βj
σ̂√
n

√
�−1
jj

∼ tn−m−1. The assumption that βj = 0 leads to the test statistic

Tj :=
β̂j

σ̂√
n

√
�−1
jj

∼ tn−m−1.

The significance probability is 2τn−m−1(−|Tj |).



Exercise 6.7 Section 6.3.7.2 described a test statistic (Equation 6.1) for the null hypothesis that all of the slopes
in a multiple linear model are 0. Is it the same as the test statistic prescribed by Equation 6.3?

Solution. The null hypothesis is that EY is in the span of 1, so the general approach (Equation 6.3) uses the
test statistic

‖Ŷ − Y 1‖2/m
σ̂2

∼ fm,n−m−1,

while Section 6.3.7.2 derived the test statistic

n‖�1/2β̂‖2/m
σ̂2

∼ fm,n−m−1.

Let’s analyze the factor in which they appear to differ. Recall that for multiple linear regression the least-squares
prediction vector can be expressed as

Ŷ = Y 1 + X̃β̂

where X̃ is the centered explanatory data matrix. Therefore,

‖Ŷ − Y 1‖2 = ‖X̃β̂‖2

= β̂
T
X̃T X̃β̂.

And in the other test statistic,

n‖�1/2β̂‖2 = nβ̂
T

�︸︷︷︸
1
n X̃T X̃

β̂

= β̂
T
X̃T X̃β̂

so they turn out to be exactly the same.

Exercise 6.8 Let Y = α1 + X̃β + ε with X̃ ∈ RRRn×m representing a centered data matrix. If Ŷ is the least-squares
prediction vector that comes from multiple linear regression, find the distribution of

‖Ŷ − Y 1‖2

σ̂2
.

Solution. Based on the preceding discussion, the statistic in question has non-central f -distribution. Ŷ is the
projection onto an (m+ 1)-dimensional subspace, while Y 1 is the projection onto a 1-dimensional subspace. Thus
the numerator has m degrees of freedom, and the denominator has n−m−1 degrees of freedom. The non-centrality
parameter is

‖(α1 + X̃β)− (α1)‖2/σ2 = ‖X̃β‖2/σ2.


