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PREFACE

Why Study Data Analysis?

To my mind, there are three excellent reasons to study data analysis.

• Jobs: Many people want to learn data analysis in order to (of course!)
become data analysts. There are plenty of jobs these days for people
with data skills, as we accumulate more and more information but have
few people with the knowledge to make use of it. But even if you
don’t want to become a professional, learning about data analysis can
be enlightening and useful for a couple of other reasons.

• Making sense of statistical “findings": In the news, in advertisements,
in books, everywhere you turn, really, you’re bombarded with statistical
“facts" about the world. For instance, “people who bicycle to work live
on average 3 years longer than people who drive to work." Don’t believe
everything you hear, even if it sounds official and statistical. I just made
that fact up, but you may have at least provisionally believed it when you
read it. Most sources probably aren’t literally making up their factoids,
but they can still very easily be wrong about them. After studying data
analysis, you’ll start to realize how easy it is to get things wrong. And
when you do have a high-quality source of statistical information, a
familiarity with data analysis helps you make sense of the findings and
understand them more precisely.

• Everyday reasoning: Statistical inference is about accurately under-
standing the world and making good decisions. We want to know what
are the most reasonable conclusions to draw after looking a dataset. By
requiring that the data has a nice structure and making a few assump-
tions about it, we’re able to treat this question with mathematical exact-
ness. In fact, all empirical fields of study are trying to draw reasonable
conclusions based on data. Often their data is more qualitative than
quantitative (e.g. a historian looking at a newly discovered artifact),
in which case statistical techniques don’t directly apply. However, the
principles you learn by studying the idealized cases still apply to some
extent. Furthermore, the same applies to all our beliefs. Our beliefs
have been shaped by the information we’ve been exposed to through-
out our lives. Even though most of our information isn’t in the form of
a nice dataset, principles from statistics and data analysis can help us
think carefully and perhaps avoid being “fooled by randomness."

About this book

I use this book to teach "Introduction to Statistics" at Yale. A "statistic"
is any quantity calculated from a dataset (e.g. mean, maximum), so the
course is really about data analysis. It is designed to be a gentle and
intuitive introduction that assumes no prior knowledge of data analysis.
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A basic competence in mathematics and programming are useful but not
essential.

In case the title of this book is ambiguous, my purpose is to intro-
duce the process of data analysis to the beginner. Some piece of software
is necessary to do data analysis, and we will use my favorite choice: R.
My purpose is not to introduce R to a person who is already familiar with
data analysis, although I hope this book could accomplish that adequately.

Why does the world need another introductory data analysis book?
Using my approach, I’ve gotten a lot of positive feedback from students.
The main feature that distinguishes this book from other sources is that
it focuses on the big picture. Indeed the “big picture" is represented by a
concept map (Figure 1.3) that will help you keep track of how the topics fit
together as you progress through the material. The concept map depicts
a set-by-step process for common data analysis tasks. It is by no means
exhaustive, but it’s a good start.

Regards,

W. D. Brinda



Part I

Introductory Material





1 Overview

Before diving into the details of the material, we are going to define a
few basic terms and outline the process of data analysis. At the end of the
chapter, we will look at a concept map of what this book will cover. I learn
best when I understand clearly how each topic fits into the big picture. To
that end, this book will repeatedly refer back to the concept map that we
present here.

1.1 What is Data?

Data is the plural form of the word datum; a datum is defined as simply
“a piece of information." However, we will deal with a more specific def-
inition in this book. We will only discuss analysis of data that can be
arranged into a data frame. A data frame1 is a table in which all of the 1 My use of the term data frame is

borrowed from the R programming
language.

values in each row are measurements of different aspects of the same ob-
ject, while all of the values in each column are measurements of the same
aspect of the different objects. That was quite a mouthful; it’s much easier
to understand by example. Let’s say there are 5 students in your class,
and you record the height and gender of each student. This data can be
arranged into a table that might, for instance, look as follows.

Height (cm) Gender
174 Female
171 Male
169 Female
174 Female
183 Male

Table 1.1: Five students’ heights and
genders.

Each row corresponds to a particular student in the class. The first column
gives the students’ heights, while the second column gives the students’
genders. That means the table is a data frame.2 Therefore, from the stand- 2 Often a data frame will have an ad-

ditional column on the far left, giving
a name or number that identifies each
row.

point of this book, we are almost ready to agree that this is a dataset we
can analyze. We just need to check that the columns are of the right type.

The rows of a data frame are called observations, while the columns
are called variables. We will deal with two different types of variables in
this book, and understanding these two variable types is vital. If the variable
consists of numerical “measurements," then we call it quantitative. The
heights reported in the first column of our table fit this description. On
the other hand, if the variable tells you which category each observation
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belongs to, then we call it categorical. For instance, there are only a small
number of gender categories, and the second column of Table 1.1 tells us
which one describes each student.

However, if a column consists of numbers, that doesn’t necessarily
mean that the variable is quantitative. Sometimes numbers are being used
to identify categories, such as in zip codes. The zip code 35758 isn’t “big-
ger" than the zip code 29475 in any important way. The numbers simply
correspond to different locations. Furthermore, if the numbers really are
meaningfully numeric, but there are only a few of them, you may still
want to treat them as categorical. For instance, if your data frame has a
variable called “year" that only takes the values 1980 and 1990, then you
probably want to call it categorical. However, if it has 1980, 1981, 1982, . . . ,
1990, then you probably want to call it quantitative.

Conversely, if a column consists of words, that doesn’t necessarily mean
that you have to treat the variable as categorical. For example, let’s say the
survey question “What is your view of the candidate?" allows three pos-
sible responses: Unfavorable, Neutral, or Favorable. Data on this variable
technically fits the definition of categorical, but it also has a very natural
ordering to it that isn’t captured by categorical data analysis techniques. In
practice, one may want to treat this variable as quantitative by, for instance,
rewriting Unfavorable as -1, Neutral as 0, and Favorable as 1. Variables of
this in-between type are often called ordinal, and you can choose to treat
them as either categorical or quantitative.

Although any pieces of information could be called “data," in this book
we will learn how to analyze data with a specific structure:

1. it is organized into a data frame

2. each variable of the data frame can be considered either categorical or
quantitative

This may seem limiting, but it actually covers a lot of ground, as you
will see from the range of datasets analyzed in this book. Even advanced
machine learning tasks that seem to lie outside of this paradigm are often
converted into problems that fit this pattern. A mastery of the techniques
and concepts in this simplified case is essential to being an effective data
analyst.

1.1 On my bookshelf, I have three books by Leo Tosltoy with 480

pages, 831 pages, and 223 pages. I also have three books by Her-
man Melville with 579 pages, 877 pages, and 767 pages. Write
this information as a data frame. What are the variable types?

1.2 What is Data Anaysis?

Once you’ve got a data frame in which you have identified each variable
as either categorical or quantitative, then you’re ready to “analyze" it. But,
like data, data analysis is another nebulous term that we should narrow
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down a bit to simplify things for ourselves. We will break the process of
data analysis up into two distinct stages: description and inference.

1.2.1 The Description Stage

In the description stage, you simply want to understand the objects repre-
sented in the dataset. For instance, in Table 1.1 the objects represented are
the five students in the class. To help us understand the objects, we use
two tools: plots and statistics.

• A plot is any picture that represents aspects of the data. A good plot
might provide a clear and intuitive understanding of the data, or it
might reveal an unexpected fact that you wouldn’t have noticed by just
looking at the data frame.

• A statistic is any value that is calculated from a dataset, for instance
the average of a quantitative variable. At this stage, our interest is in
statistics that will summarize aspects of the data for us in useful ways.

Looking at plots and thinking about statistics will likely improve your
understanding of the objects in the dataset, and, in doing so, will hopefully
help you address the questions that motivated the data analysis (if there
were any).

But which plots should you create, and which statistics should you
calculate? That depends on two things:

• First, the set of possible plots and statistics depends on the nature of
the dataset. In particular, the types of variables (quantitative and cate-
gorical) determine what plots and statistics make sense, as you will see
in the coming chapters.3 3 The size of the dataset also matters in

some cases. If the number of observa-
tions or the number of variables is very
large, some techniques may be com-
putationally infeasible. However, the
topic of big data is beyond the scope of
this book.

• Secondly, it depends on the purpose of the data analysis. You don’t
need to make every possible plot and calculate every possible statistic.
Instead, think about questions are you trying to answer?4 Let these

4 Sometimes there is no specific ques-
tion in mind, and the data analysis is
simply exploratory.

questions guide your choices; make the plots and calculate the statistics
that you think will be helpful. In general, however, it’s also a good idea
to make a variety of plots for yourself along the way, because you never
know what you’re going to learn.

This book will introduce a handful of plots and statistics that are often
useful in common cases. But you never know what peculiar datasets and
questions you’ll face in “real world" data analysis. Ultimately, a data ana-
lyst must be creative.

Let’s look at one simple example of how the description stage of data
analysis might help you address a real-world problem.

Example 1.2.1. My computer’s hard drive is running low on space. I have
10,000 files, each of which is a doc, a jpg, or an mp3. I have saved the
filetype and size (in megabytes) of each file as a csv (comma-separated
values) file on my website. Below, the data is read into R as a data frame,
and the first six rows are displayed.5 5 Throughout this book, any R code

I use will be on display. You may
want to ignore the code for now if it is
distracting you from the main concepts
of this chapter. But make sure to look
at the R output (the lines that start
with ##).
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# Read in the data from the web

x <- read.csv("http://quantitations.com/book/formats-sizes.csv")

# Display the first six rows of the data frame

head(x)

## format size

## 1 jpg 0.78

## 2 doc 0.15

## 3 doc 0.19

## 4 jpg 0.01

## 5 mp3 9.23

## 6 mp3 4.54

We see two variables: format is a categorical variable, and size is a quan-
titative variable. Now, let’s take a look at how many files I have of each
format.

table(x$format)

##

## doc jpg mp3

## 3656 5199 1145

My computer has many times more jpgs and docs than it has mp3s. But
that’s not really getting at the question of space. Instead, let’s add up the
file sizes of all our docs, jpgs, and mp3s separately.

totals <- sapply(split(x$size, x$format), sum)

totals

## doc jpg mp3

## 741.70 1295.37 9569.65

Aha! Now we see that the vast majority of the space on my hard drive is
being used by mp3s. Let’s turn these numbers into plots to give ourselves
a visual understanding of how much more space is being used by mp3s than
by other formats.
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pie(totals, col=2:4, cex=2)

barplot(totals, col=2:4, cex.names=2, cex.axis=2)
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Figure 1.1: Left: The pie chart shows
what proportion each format is con-
tributing to the total space usage.
Right: The bar chart shows how much
space each format is using.

From the statistics we calculuated and the plots in Figure 1.1, we’ve
learned that the vast majority of my storage is being taken up by mp3s.
This data analysis didn’t solve my problem, but it tells me where I should
direct my attention. There is little point in, for instance, trying to figure
out how to compress my jpg files, but there might be great gain if I could
compress my mp3 files.

In this example, we were trying to better understand only the set of files
that were represented in the dataset. Therefore, once we had finished the
description stage, we were finished with our data analysis. Often, how-
ever, we are also interested in pursuing the more ambitious aim of drawing
conclusions about objects that were not represented in the dataset, as we
discuss next.

1.2.2 The Inference Stage

In Example 1.2.1, the dataset represented all the files on my computer. Be-
cause my question was only about those files, I didn’t need to speculate
about any files that weren’t in the dataset. Often, however, we want to
generalize our conclusions from a dataset to a larger population. A com-
mon example is opinion polls. How is it that pollsters can feel confident
in their claims about an entire country after asking their questions to only
a few hundred people? The inference stage only occurs if you also want to
draw conclusions about a larger population that your data was sampled
from.

Let’s revisit Example 1.2.1, but this time pretend that we didn’t have all
the files in our dataset. Imagine that recording formats and sizes is hard
work. Instead of gathering that data on all the files, we will only gather
the data on a sample of the files. In particular, we will take a random sam-
ple, a subset of the population in which each file was equally likely to be
included. We will use a sample size of 100. This random sample of 100 files
(from the 10,000 total files) can be easily simulated in R.
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# Take a random sample of size 100 from the full data set

y <- x[sample(1:nrow(x), 100), ]

head(y)

## format size

## 2656 mp3 19.74

## 3721 jpg 0.04

## 5728 doc 0.00

## 9080 jpg 0.14

## 2017 jpg 0.16

## 8980 jpg 0.09

Next, we will look at the total amount of space used by the different for-
mats in our sample.

totals <- sapply(split(x$size, x$format), sum)

totals

## doc jpg mp3

## 741.70 1295.37 9569.65

As with the full data set, the sample has *mp3*s taking up the vast majority
of the space. Another pie chart and bar chart in Figure 1.2 gives us a visual
impression; note the resemblance to Figure 1.1

pie(totals, col=2:4, cex=2)

barplot(totals, col=2:4, cex.names=2, cex.axis=2)

Figure 1.2: The proportion of
space used by the different for-

mats in this sample resemble the
proportions in the full data set.
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Our analysis of this random sample of 100 files leads us to the same basic
conclusion that our analysis of the full 10,000 files did.

This example demonstrates a general phenomenon and the key insight
underlying inference: a random sample tends to resemble the population that
it was drawn from. Furthermore, the larger the sample size, the stronger the
resemblance tends to be. In the inference stage of data analysis, we make
probabilistic statements about the population based on statistics calcu-
lated from the sample. Understanding this process in detail requires some
knowledge of probability; our main explanation of probability and infer-
ence will come in Chapter 3.



overview 15

1.3 The Mix of Variable Types

Let’s recap the data analysis process. Given a data frame, we classify each
variable (column) as either quantitative or categorical, if possible.6 The 6 If some of your variables aren’t easily

classified as quantitative or categorical
(e.g. an essay), then you can leave
those variables out, and still perform
a data analysis on the remaining
variables, if there are any. Or you may
be able to manually “recode" a variable
as categorical; for example, you can
categorize essays according to their
topics.

first stage of analyzing this data is to simply describe the observations
(rows) in the data frame with the assistance of plots and statistics. Plots
are graphical displays that help you see aspects of the data, while statistics
are values that summarize aspects of the data. If you also want to draw
conclusions about a larger population than was represented in the data
frame, then you proceed to the inference stage. In this stage, you make
probabilistic statements about the population based on statistics calculated
from the sample. Inference is justified by the fact that a random sample
tends to resemble the population that it was drawn from.

In the description stage, the plots and statistics available depend on the
types of variables in your data frame. In Part II, we will present some of
the plots and statistics that we have found most useful for analyzing each
of the cases listed below. Inference also depends on the types of variables,
and in Part III, we go through each case again, this time presenting some
of the inference techniques that I have found most useful. The cases are
broken up as follows.

1. Quantitative variables (Description: Ch. 4; Inference: Ch. 7)

• one quantitative variable

• two quantitative variables7 7 This section also includes an ex-
tended section on linear regression, a
common and powerful technique that
can be used on an arbitrary number of
variables with arbitrary types!

• three quantitative variables

2. Categorical variables (Description: Ch. 5; Inference: Ch. 8)

• one categorical variable

• two categorical variables

3. Both categorical and quantitative variables together (Description: Ch. 6;
Inference: Ch. 9)

• one quantitative variable and one categorical variable

• one quantitative variable and two categorical variables

• two quantitative variables and one categorical variable

Why did we stop with these cases? Because these are the cases in which
it is possible to make easily interpretable plots. If you try to include any
more variables than this in a single plot, you’re usually pushing it. I
don’t want to discourage you from being creative, but you should keep in
mind that there are limits to humans’ pattern-detection abilities. You may
come up with a clever way to pack four quantitative and three categorical
variables onto a single plot, but that doesn’t mean that other people who
see your plot are going to be able to make any sense of it.

You often just want to work with some subset of your variables at a
time. For instance, assume you want to analyze a data frame comprising
two categorical variables called X and Y and one quantitative variable
called Z. We see that there is a section of this book (“One quantitative
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variable and two categorical variables") telling us how to analyze all three
of these variables together. But we could also look at any subset of the
variables. Here are the seven possibilities:

• X, Y, and Z all together (one quantitative variable and two categorical
variables)

• X and Y together (two categorical variables)

• X and Z together (one quantitative variable and one categorical vari-
able)

• Y and Z together (one quantitative variable and one categorical vari-
able)

• X by itself (one categorical variable)

• Y by itself (one categorical variable)

• Z by itself (one quantitative variable)

Each of these subsets is addressed by a section of the book and could
be analyzed accordingly. Should you look into them all? Don’t hesitate
to make any plot that might be interesting,8 but there are often so many8 Often a plot will reveal that some

of the data values don’t make any
sense such as, for example, if the

variable is supposed to be measur-
ing a distance and you find that

you have negative values. This is
one reason to make more plots than
you strictly need; they make it more

likely that you will detect nonsen-
sical or suspicious data. When you

find strange things in a dataset, you
might try asking the people who col-
lected the data if they can explain it.

possibilities that you don’t want to pursue them all. Focus on the ones
that make the most sense based on the purpose of your data analysis.

In a sense, this book gives you step-by-step instructions for analyzing a
dataset.

1. Check that the data is structured as a data frame; if it isn’t, try to rewrite
it as one.

2. Classify each variable as either quantitative or categorical; ignore any
variables that are neither.

3. Decide which subsets of the variables you want to analyze; each subset
must fit a pattern from the above list.

4. Description stage: For each desired subset, find the section in Part II
discussing that subset of variables. Adapt the sections’ example code to
create plots and calculate statistics; think carefully about the plots and
statistics to better understand your data.

5. Inference stage: If you also want to draw conclusions about a larger
population, then, for each desired subset, find the section in Part III
discussing that subset of variables. Adapt the sections’ examples to
make probabilistic statements about the population your observations
were sampled from.

However, data analysis is rarely so straight-forward in the real world. This
book is intended to make you comfortable with the principles behind data
analysis and with R programming. It is a starting point, but keep studying
because there are a lot of useful techniques out there. And be ready to
think creatively, because you may face data analysis tasks that nobody
else has had to think about before!
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1.4 The Big Picture

The main concepts and topics of this book are organized into a graphic
below. We will fill in more details as we go. I find that when learning a
new topic, it is always helpful to clearly understand how it’s related to the
other topics, that is, how it fits into the big picture. Each chapter in Parts II
and III will start by reminding you of the big picture and pinpointing
which piece it will be covering. Those chapters end with another view of
the picture, this time filled in with the main points you learned in that
chapter.

Figure 1.3: The “big picture" of topics
this book will cover.

Next up, Chapter 2 introduces you to R programming. First, it will help
you get set up to run R on your computer, so that you can replicate any
of the code snippets you find in this book’s data analysis examples. Then
it covers the very basics of the programming language, so that you can
begin to make sense of the book’s code snippets. However, most of your
understanding of R will happen gradually as you go through the book’s
examples.

After that, Chapter 3 discusses the relationship between probability and
inference. There you will see simple examples to help you get a clear un-
derstanding of how inference works. The chapter contains a bit of mathe-
matics which I hope will not bog you down. If you’d prefer, you can skip
that chapter for now and go through Part II covering the description stage
of data analysis. But you should return to Chapter 3 before moving on to
Part III covering inference.





2 R Basics

The best way to learn a programming language is by using it for a
project. Still, an explicit introduction to the very basics gives you a bit
of solid ground to build upon. This chapter will help you get set up to
work with the R language using the marvelous RStudio program. It will
also provide some fundamentals of the language and explain a way to
neatly incorporate R code and output into reports.

2.1 Setting Up

R is a programming language that’s popular for data manipulation. An
up-to-date R interpreter can be downloaded from r-project.org. After
downloading and installing the interpreter, you’ll also want to download
and install RStudio which provides a helpful visual interface for you to
work with the interpreter.

2.2 Language fundamentals

Open RStudio, and find the box labeled Console. There should be a blink-
ing cursor to the right of the > at the bottom of the box; if there isn’t, then
click to the right of > . Now type 1+2 and hit enter. The R interpreter
reads your message and responds with [1] 3 . Ignore the [1] for now;
the R interpreter acted like a calculator and told us that 1+2 is 3. Next
type a <- 1+2 and hit enter. This time the result of the calculation 1+2

is stored as an object called a . Type a and hit enter to see its value.
Let’s see one more quick example. Type 1:100 and hit enter. This is a

convenient way to create a vector comprising the integers from 1 to 100.

2.1 Try the command rep(1, 100) . What does it do? Looking
at the interpreter’s response to this command and to 1:100 ,
figure out what the [1] means.

Make a guess at what R’s response to each of the following commands
will be, then run the command to check if you were right. (If you have no
idea what to guess, just try it and see what happens.)

• (1:5)^2

• sum(1:5)
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• sum(rep(1, 5))

• mean(1:5)

• prod(1:5)

• max(1:5) - min(1:5)

• 1:4 + 3:6

• 2 * (1:4)

• 1:4 * 3:6

• log(1:4)

• log10(1:4)

• sqrt(1:4)

• c(1, 3, 5)

• c(1:4, 1, 3, 5)

• v <- c(c(1, 3, 5), 1:4); length(v); v

• m <- matrix(1:20, nrow=5, ncol=4); m

• rowSums(m)

• ignore this

• # ignore this

• print("hello")

• paste("the square root of 25 is", sqrt(25)); print("hello")

An important feature of R is the ability to easily select from a vector or
matrix. Try the following (make sure you’ve run the code above):

• v; v[3]; v[3:5]; v[c(1, 2, 1)]; v[-3]

• v[2] <- 100; v

• m; m[1, ]

• m[, 2:3]

• m[1:2, c(2, 4)]
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2.2.1 Functions

Both rep and sum are functions that are built into R, but we can also
write our own functions. Give the console the following command.

sumsq <- function(v) { return(sum(v^2)) }

This creates a function object called “sumsq" which is now available
for us to use on any numerical vector (which the function will call “v"
internally). It squares the vector’s entries, adds up those squared values,
then gives us back the result of that calculation.

2.2 Predict the response to sumsq(1:3) , then try it out to check
your prediction.

In practice, we won’t usually type our code directly into the console.
Rather, we will type it into a text file so that we can more easily keep track
of what we’ve done. From the RStudio menu, select File > New File > R
Script to create an empty file. Enter the following code:

sumsq <- function(v) {

return(sum(v^2))

}

avgsq <- function(v) {

return(sumsq(v)/length(v))

}

You’ve already defined sumsq and R remembers what it means, but
now you’ve also recorded that definition so that you can easily check it,
change it, or share it with others. We still need to tell the interpreter what
we want avgsq to mean. Click and drag your cursor across the three lines
of code that define avgsq . Then in the RStudio menu, find Code > Run
Selected Line(s). There should be symbols next to “Run Selected Line(s)"
that tell you what its hotkey is (e.g. on a Mac, it’s Command+Enter.)
Take note of this hotkey, because you’ll use it constantly when working
in RStudio. Press the Run hotkey once to run the three lines of code that
define avgsq .

2.3 The avgsq function calculates the average of the squared values
of a vector. Test this by running avgsq in the console. Suppose
that what we really wanted it to do was calculate the square of
the average value of a vector. Change the code so that it does
this, then run avgsq(1:2) in the console. It gives the same
number as before because the console isn’t aware that you’ve
changed the definition of avgsq . You have to tell it. Select the
code defining avgsq and press the hotkey to run it. Then run
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avgsq(1:2) in the console one more time to check that your
new code is working as expected.

2.2.2 Conditionals

Some expressions are interpreted as being either TRUE or FALSE . Run
the following commands one at a time, and think about their output.

a

a <= 12

a > 4

a == 4

a == 3

a != 3

a != 4

The ! symbol means not. Notice that checking for equality involves
two equals signs.

An if statement only runs its code if the expression between the paren-
theses is TRUE . Type the following in the bottom of your file, then run it.

if(a < 3) {

print("It's strictly less than 3")

}

if(a <= 3) {

print("It's less than or equal to 3")

}

A TRUE / FALSE vector can also be used to select a subset from another
vector. Try the following:

v <- 1:20

v > 12

v[v > 12]

2.2.3 Loops

Type the following at the bottom of your file, then run the code.

for(i in 1:3) {

print('hello')

}

This is a for loop. The part between { and } is called the body of the
loop. For each element in the vector 1:5 , the interpreter runs the body of
the loop. The loop is interpreted to mean
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i <- 1

print('hello')

i <- 2

print('hello')

i <- 3

print('hello')

Because i doesn’t show up in the body, the loop does the exact same
thing each time through. Change the code as follows, and run it again.

for(i in 1:3) {

print(rep("hello", i))

}

When the number of iterations needed isn’t known ahead of time, a
while loop is a good alternative to a for loop. The body of the while loop
runs over and over as long as the expression inside the parentheses is
TRUE . Type and run the following:

i <- 1

while(2^i <= 1000) {

print(2^i)

i <- i + 1

}

Another way to end a loop is by using break . The following code
block works just like the code above.1 1 Note that the R interpreter accepts T

and F to mean TRUE and FALSE .

i <- 1

while(T) {

print(2^i)

i <- i + 1

if (2^i > 1000) {

break

}

}

2.2.4 Workspace

Press the Save hotkey (look at File > Save to see what the hotkey is). Enter
the name “example" and save the file to your Desktop folder. You have
created the file “example.R" in your Desktop folder.

From the RStudio menu, select Session > Clear Workspace. This re-
moves the objects you’ve defined so far. Try sumsq(1:3) in the console,
and you will get an error.

Next click Session > Set Working Directory > Choose Directory. Select
your Desktop folder (it may already be selected), and press Enter. Run
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the command source("example.R") in the console; this command tells
the interpreter to read in the entire contents of the R Script file example.R
which it expects to find in the current working directory. Run sumsq(1:3)

in the console to verify.
Finally, click the tiny “x" to the right of where it says “example.R" in

RStudio to close the file. In a file browser, delete the file example.R; we
won’t be needing it anymore.

2.3 R Packages

So far, you’ve been using “base R." It has a variety of built-in functions
like sum that make it a relatively convenient language for data analysis.
Our sumsq and avgsq functions are built “on top" of base R and they
are tools that might make some data analysis tasks ever-so-slightly more
convenient. In fact, over the past decades, countless R users have been
writing code that they find convenient and sharing it with the world by
putting it in an R package. A few packages are automatically installed
along with the R interpreter when you download it; one of these is the
MASS package. Try the following commands in the console in this order:

• Traffic

• MASS::Traffic

• Traffic

• library(MASS)

• Traffic

There is an object called “Traffic" stored in the MASS package. It can be
accessed by either reaching selectively into MASS (with MASS::Traffic )
or after dumping the entire contents of MASS into your environment a.k.a.
workspace (with library(MASS) ).

The vast majority of the publicly available R packages need to be down-
loaded before they can be used. Over ten thousand of those packages (in-
cluding the most commonly used ones) are hosted by a group called the
Comprehensive R Archive Network (CRAN). Those packages can be easily
downloaded right from the console. As an example, use install.packages("rmarkdown")

to download the rmarkdown package; any other packages that rmarkdown
uses will also be installed automatically by this command.

2.4 To be more precise, you just installed the current version of the
rmarkdown package. Look at the interpreter’s output and figure
out what version number of rmarkdown was installed.

2.4 Markdown

A language called Markdown is commonly used to indicate simple struc-
ture and formatting within a plain text file without cluttering it. The text
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is processed by a parsing program which turns it into a structured and
formatted document. As a very simple example, “this *Markdown* text"
gets displayed as “this Markdown text"; text that lies between asterisks gets
italicized. Markdown also makes it easy to make bold text, create links,
create tables, insert images, write LaTeX math, and the list goes on.

We will use a language called R Markdown to write nice polished docu-
ments that fluidly incorporate R code and plots. From the RStudio menu,
select File > New File > R Markdown. Make the title “Nice Example" and
click OK. RStudio opens a simple example R Markdown (Rmd) file. Go to
File > Knit Document (and make note of the hotkey); RStudio will prompt
you to save the file, then it will display the processed example document
as a webpage. In the file editor, change the first sentence under “## R
Markdown" to “This is my *first* R Markdown document." Then press the
Knit Document hotkey again to see your change implemented.

R Markdown does ordinary markdown parsing, but it does a bit of
extra processing first. It looks for R code to run; notice what happens with
summary(cars) and plot(pressure) from the Rmd file. R Markdown

displays your R code neatly, along with the interpreter’s output and plots.
You should use it to complete this book’s exercises.

2.5 Change {r pressure, echo=FALSE} to {r} and knit the doc-
ument again. What do you think pressure and echo=FALSE

were doing?

The package knitr is used for specifying how you want to handle each
code chunk, for instance, if you want to change the size of a plot — see the
knitr website.

Cosma Shalizi’s online guide provides a good idea of what else R Mark-
down can do.

2.5 More

We’ve covered some of the very basics here; you will learn much more as
we go. A nice cheat sheet summarizing R fundamentals is available at the
RStudio website.

If you want more information about any object (e.g. a function or a
dataset) in base R or in a package that you’ve loaded into your environ-
ment, click on RStudio’s Help tab, type the name of the object, and press
enter. Related commands are often bundled together into the same help
file.
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2.6 Read about the “file" argument in the help page for read.csv ;
the file’s location can be specified with either a path on your
computer or a url. Run the following code to read in a csv file
from the web.

d <- read.csv("http://quantitations.com/book/formats-sizes.csv")

Then download the file “formats-sizes.csv" onto your computer
and use read.csv again to read it in locally. (Use the getwd()

command to see which folder you need to put the csv file into.)
Use the head command to prove that the file was read in suc-
cessfully.

You can also search the web for answers to your questions and, if nec-
essary, post to StackOverflow.



3 Probability and Inference

The magic of statistics happens in the inference stage of data analysis.
From a sample of data points, we will be able to make probabilistic state-
ments about a whole population that the sample was drawn from. But
you have to understand some concepts from probability theory before you
can understand inference.

3.1 Probability

When you flip a coin, you don’t know which side it’s going to land on.
The unpredictable nature of phenomena such as this is often called ran-
domness, and the behavior of unpredictable phenomena can be modeled by
the mathematical concept of probability. But probability is also a concept
that you’re intuitively familiar with from your everyday experience and
language. In this section, we’ll build on that intuition by introducing the
concept of a random variable.

A random variable is an “unknown" quantity that has a probability distri-
bution. The probability distribution (or just distribution) tells you the prob-
ability that the unknown quantity is in any interval of values. To make
this more concrete, let’s think about a specific example in the context of
coin-flipping.

3.1.1 Binomial Distributions

Assume I am going to flip a fair coin1 once. Let the random variable X 1 A fair coin has an equal probability of
landing on either heads or tails.represent the number of times that the coin lands showing heads. There

are two possible values for X, because the coin can land heads-up zero
times or one time; each of these is equally probable. The sum of the prob-
abilities of all possible outcomes is 1, so in this case the two probabilities
are P(X = 0) = 1/2 and P(X = 1) = 1/2.

Next, assume I am going to flip a fair coin twice. Again, let the random
variable X represent the number of times that the coin lands showing
heads. There are four possible outcomes, each with probability 1/4 of
occurring: HH, HT, TH, TT. One of the outcomes results in X = 0, two
outcomes result in X = 1, and one outcome results in X = 2. This means
that

• P(X = 0) = P(TT) = 1/4

• P(X = 1) = P(HT) + P(TH) = 1/4 + 1/4 = 1/2
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• P(X = 2) = P(HH) = 1/4.

What if the coin isn’t necessarily fair? Assume, more generally, that
we have a coin that has probability p of landing heads on each flip. Let
the random variable X represent the number of times that the coin lands
showing heads. Then P(X = 0) = 1− p and P(X = 1) = p. This is called
the Bernoulli distribution with parameter p.

Again, let’s think about flipping the coin twice. Let the random variable
X represent the number of times that the coin lands showing heads. There
are four possible outcomes: HH, HT, TH, TT. This time, however, we can’t
assume that the outcomes are equally probable. To find the probability of
each outcome, we can draw a tree.

Along each branch, write the probability of moving from the left end-
point to the right endpoint. In coin-flipping, we assume that each flip is
independent of all the others. That means that your probability of getting
heads doesn’t depend on what has happened on past flips. We can also
say that the flips are identically distributed because each flip has the exact
same probability of showing heads. These two conditions often show up
together in probability and statistics, so we have an abbreviation for them:
iid stands for “independent and identically distributed."

To find the probability of following any particular path, multiply the
numbers along that path.

• P(X = 0) = P(TT) = (1− p)2

• P(X = 1) = P(HT) + P(TH) = p(1− p) + (1− p)p = 2p(1− p)

• P(X = 2) = P(HH) = p2

Let’s generalize this scenario to an arbitrary number of coin-flips. First,
notice that the probability of any path only depends on the number of
heads and tails it has. If n is the total number of coin-flips, then the
probability of any particular outcome with k heads (and n − k tails) is
exactly pk(1− p)n−k. But to find the probability that X = k, we need to
take the sum of the probabilities of all the paths that have k heads. Because
all these paths have the same probability, we simply need to multiply that
probability by the number of paths with k heads. The notation (n

k) is used
to denote the number of coin-flip sequences that have k heads in n flips.22 Equivalently, this is the number of

subsets of size k that exist within a
set of size n. When you see the sym-

bol, you read it aloud as “n choose k."

Therefore, if k is an integer between 0 and n, then3

3 For any other numbers,
the probability is zero.

P(X = k) =
(

n
k

)
pk(1− p)n−k.

It can be shown that the number of coin-flip sequences with k heads in n
flips is equal to a simple expression in terms of factorials.(

n
k

)
=

n!
k!(n− k)!

Thus, given any n, p, and k, you could use this formula (and a calculator)
to find the probability of flipping k heads. Thankfully, R makes it even
easier than that with the built-in dbinom function. For instance, to get the
probability of one heads in two flips of a fair coin (p = .5), which we
calculated eariler, we can use the dbinom function.
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dbinom(1, 2, .5)

## [1] 0.5

This is a value from the probability mass function (pmf), which gives the
probability that X = k for each k. Let’s see what the whole pmf looks like.

drawPMF <- function(n, p=.5) {

# This function draws a pmf for the Binomial

# distribution with the given n and p.

k <- 0:n

pmf <- sapply(k, dbinom, size=n, prob=p)

plot(k, pmf, col=4, type="h", ylim=c(0, max(pmf)))

}

drawPMF(2)
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The height of the bar above each value tells you the probability that X
takes that value. To find the probability that X is in some set A of possi-
ble values, you simply need to sum up the heights of the bars above the
numbers in A. The total sum of the heights has to be one.

As another example, let’s increase the sample size to 20 and draw the
pmf again.
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drawPMF(20)

Figure 3.1: The probabil-
ity mass function of the Bi-
nomial(20, .5) distribution.
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For any n (total number of coin flips) and p (probability that each flip
will land heads), we get a distribution definining the probability that X
(the number of heads) takes each value from 0 to n. We call these Binomial
distributions; any (n, p) pair defines the Binomial(n, p) distribution.

3.1 How many ways are there to get 3 heads in 5 coin flips? What is
the probability of any of these particular outcomes if the heads
probability is .8? Use these two numbers to find the probability
of getting 3 heads in 5 coin flips.

If X is a Binomial(n, p) random variable, then we can always write it as

X = X1 + X2 + . . . + Xn

where the Xi are independent Bernoulli(p) random variables. Each Xi rep-
resents the outcome of a coin-flip. Because of this representation, we can
say that X is a sum of iid random variables, which is a common scenario
in inference.

In addition to the pmf, another useful function for probability distri-
butions is the cumulative distribution function (cdf). For any probability
distribution, the cdf F is defined by

F(t) := P(X ≤ t).

Visualizing this in terms of the pmf, F(t) is equal to the sum of the heights
of the bars from −∞ to t.

Let’s see a specific example of a cdf. Recall the scenario of two fair coin
tosses from earlier. We found that the pdf was

P(X = k) =


1/4 k = 0

1/2 k = 1

1/4 k = 2

0 otherwise

.
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The cdf in this case is thus

F(t) = P(X ≤ t) =


0 t < 0

1/4 0 ≤ t < 1

3/4 1 ≤ t < 2

1 otherwise

.

See Figure 3.2 for a drawing of the cdf.

drawCDF <- function(n, p=.5) {

# This function draws a cdf for the Binomial

# distribution with the given n and p.

k <- 0:n

cdf <- sapply(k, pbinom, size=n, prob=p)

lower <- c(0, cdf[1:n])

plot(k, lower, col=4, ylim=c(0, max(cdf)),

ylab=expression(P(X <= k)))

points(k, cdf, col=4, pch=19)

for(i in 0:(n-1)) {

lines(c(i, i), c(lower[i+1], cdf[i+1]), lty=3, col=4)

lines(c(i, i+1), c(cdf[i+1], lower[i+2]), col=4)

}

lines(c(n, n), c(lower[n+1], cdf[n+1]), lty=3, col=4)

lines(c(-1, 0), c(0, 0), col=4)

lines(c(n, n+1), c(1, 1), col=4)

}

drawCDF(2)
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Figure 3.2: The cdf of the Binomial(2,
.5) distribution.

For Binomial distributions, you can find F(t) by adding up the proba-
bilities for all the integers from zero to t.

F(t) = P(X ≤ t) =

∑
btc
k=0 (

n
k)pk(1− p)n−k t ≥ 0

0 otherwise
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Again, R saves us a lot of work with a built-in function pbinom. For in-
stance, to find the probability of one or fewer heads in two flips of a fair
coin (p = .5), use the pbinom function as follows.

pbinom(1, 2, .5)

## [1] 0.75

The cdf evaluated at t tells you the probability that X is less than or
equal to t, but it can also be used to find the probability that X is greater
than t. This is easy to understand by picturing the pmf. P(X > t) is equal
to the sum of the heights of the bars to the right of t. Because the total
sum is one, this probability is just 1 minus the sum of the heights of the
bars from −∞ to t. That is,

P(X > t) = 1− P(X ≤ t)

= 1− F(t)

The cdf can also be used to find the probability that X is in any given
interval. Assume you want to find P(a < X ≤ b). That is equal to the
sum of the heights of the pmf bars that are between a and b (including the
endpoint b but not a). We can start with F(b), the sum of the bars up to
b then simply subtract F(a), the sum of the bars up to a to get the sum of
the bars just in our desired interval (a, b].

P(a < X ≤ b) = P(X ≤ b)− P(X ≤ a)

= F(b)− F(a)

Let’s work through some specific example questions for a Binomial ran-
dom variable. Suppose you have a coin with heads probability of .4, and
you plan to flip it 100 times. What is the probability that you get exactly
40 heads? At most 35 heads (i.e. P(X ≤ 35))? At least 45 heads (i.e.
P(X > 44))? Between 30 and 50 heads (i.e. P(29 < X ≤ 50))?

dbinom(40, 100, .4)

## [1] 0.08121914

pbinom(35, 100, .4)

## [1] 0.1794694

1 - pbinom(44, 100, .4)

## [1] 0.1789016

pbinom(50, 100, .4) - pbinom(29, 100, .4)

## [1] 0.968463

Each Binomial distribution is a discrete distribution, meaning that the set
of possible values for X is countable.4 But it is also possible to talk about4 “Countable" means that it’s

possible to make a list of them. distributions over uncountable sets, such as the entire real line. For data
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analysis, the most important example of such a distribution is the standard
Normal distribution.5 5 Another common term for Normal is

“Gaussian."

3.2 Derive the pmf and the cdf of the Binomial(3, .4) distribution by
drawing a tree diagram of the possible outcomes.

3.1.2 Normal Distributions

Whereas a discrete distribution has a probability mass function (pmf), a
continuous distribution such as the standard Normal has a probability density
function (pdf, or just density). And whereas a pmf tells you the probability
that X = k, a pdf is used to find the probability that X is in a given interval.
In particular, if X has a pdf, then P(X ∈ [a, b]) is equal to the area under
the pdf in the interval from a to b. The total area under the pdf is equal to
1, just like the sum of bar heights in a pmf equals 1.

The standard Normal distribution is defined by the pdf

f (t) =
1√
2π

e−t2/2

Figure 3.3 shows this function over the interval from −3 to 3, although it’s
positive over the entire real line.

# Draw the standard normal density curve

grid <- seq(-3, 3, length.out=100)

plot(grid, sapply(grid, dnorm), type="l", col=4,

xlab="x", ylab="density", main="Standard Normal Density")
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Figure 3.3: The pdf that defines the
standard Normal distribution.

Let’s see a simple example of what the pdf tells you. If X is a random
variable with the standard Normal distribution, then the probability that X
is between 0 and 2 is equal to the area under the pdf shaded in Figure 3.4.
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# Draw the standard normal density curve

grid <- seq(-3, 3, length.out=100)

plot(grid, sapply(grid, dnorm), type="l", col=4,

xlab="x", ylab="density", main="Standard Normal Density")

# Shade the area under the curve from 0 to 2

grid <- seq(0, 2, length.out=100)

points(grid, sapply(grid, dnorm), type="h", col=3)

Figure 3.4: The standard Normal pdf
with the region from 0 to 2 shaded.
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In general, the probability that a random variable’s value is between a
and b is the area under its pdf from a to b. If you’re familiar with calculus,
you will realize that this is equal to the definite integral. In the standard
Normal case, for instance, this is

P(X ∈ [a, b]) =
∫ b

a

1√
2π

e−t2/2 dt.

Thankfully, we can use the cdf and built-in R functions to avoid having to
calculate this integral by hand. The cdf F(t) tells you the amount of area
under the pdf from −∞ to t. The same equation we derived for discrete
distributions also holds for continuous distributions.66 In the case of continuous distri-

butions, it doesn’t actually matter
whether you’re trying to find the prob-

ability of the open or the closed inter-
val. The difference is a single point,

and there’s no area under a single
point. So P(X ∈ [a, b]) = P(X ∈ (a, b)).

P(X ∈ (a, b]) = F(b)− F(a)

Thus, we can repeat the same tricks that we used in the discrete case above
to find probabilities of intervals. To find the area under the pdf from 0 to
2, for example, we can take the amount of area up to 2 and subtract the
amount of area up to 0. In R, the Normal cdf is pnorm, so for a standard
Normal X, P(X ∈ [0, 2]) equals

pnorm(2) - pnorm(0)

## [1] 0.4772499
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3.3 You’ve seen the standard Normal distribution’s pdf. Another
commonly used continuous distribution is the standard Ex-
ponential distribution. The following code creates a function
interval.exponential that takes a lower endpoint a and an

upper endpoint b for an interval. It then draws the standard
Exponential pdf from 0 to 10, shades the area under the given
interval, and reports the probability that a standard Exponential
random variable would be in that interval.

# This code is available at http://quantitations.com/book/interval.exponential.R

interval.exponential <- function(a, b) {

# Draw the standard Exponential pdf from 0 to 10

grid <- seq(0, 10, length.out=100)

pdf <- sapply(grid, dexp)

plot(grid, pdf, type="l", col=4, xlab="x", ylab="density",

main="The standard Exponential pdf")

abline(h=0, lty=2)

# Shade the region from a to b

grid <- seq(a, b, by=.01)

pdf <- sapply(grid, dexp)

points(grid, pdf, type="h", col=2)

# Find the probability that X is in [a, b]

p <- pexp(b) - pexp(a)

say <- paste("P(X is in [", a, ",", b, "]) is about", round(p, 2))

text(3.5, .4, say)

return(p)

}

interval.exponential(1, 3)

## [1] 0.3180924
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P(X is in [ 1 , 3 ]) is about 0.32
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I want you to create a function called interval.normal that
does this same thing for the standard Normal pdf. (My
function draws the standard Exponential pdf from 0 to 10,
but yours should show the standard Normal pdf from -
3 to 3.) Demonstrate that your code works by running
interval.normal(1, 3) . Make sure to hand in your code and

the output of the function call interval.normal(1, 3) , which
will be a plot and a number.

The so-called “bell curve" shape seen in Figure 3.3 actually defines a
family of Normal distributions, parameterized by a mean and a variance. The
mean and variance quantify the “location" and “spread" of a distribution’s
probability; they will be discussed in the next section. The standard Nor-
mal distribution is simply the Normal distribution with mean equal to
zero and variance equal to one.

3.1.3 Expected Values

The expected value (also known as the expectation or the mean) of a random
variable is the weighted average of its possible values, weighted by the
probabilities of those values. If X is a discrete random variable that can
take any value in some set K, this can be expressed as77 For the expected value of a con-

tinuous random variable, the sum
is replaced with an integral, and

the pmf is replaced with a pdf.
E(X) := ∑

k∈K
kP(X = k)

As an example, let’s find the expected value of X if it has a Bernoulli(p)
distribution. Recall P(X = 0) = 1− p and P(X = 1) = p. Then

E(X) : = ∑
k∈{0,1}

kP(X = k)

= (0)P(X = 0) + (1)P(X = 1)

= (0)(1− p) + (1)(p)

= p

If X and Y are random variables, and a and b are constants, then88 This fact holds as long as the two
expectations aren’t ∞ and −∞.

E(aX + bY) := aE(X) + bE(Y)

We can use this fact to find the expectated value of a Binomial(n, p) ran-
dom variable X. Recall that X can be expressed as a sum of n independent
Bernoulli(p) random variables.

E(X) = E(X1 + X2 + . . . + Xn)

= E(X1) + E(X2) + . . . + E(Xn)

= p + p + . . . + p

= np

Any function of X, such as X2 or eX is also a random variable. It’s
expectation can be written in terms of the probability distribution of X.

E[ f (X)] = ∑
k∈K

f (k)P(X = k)
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The variance of X is the expectation of the squared deviation of X from
its expected value. For simplicity, we’ll use the symbol µ to denote E(X).

V(X) := E[(X− µ)2]

= ∑
k∈K

(k− µ)2P(X = k)

The standard deviation is defined to be the square root of the variance.
Intuitively, the variance (and standard deviation) quantify how “spread
out" a distribution is.

Let’s find the variance of a Bernoulli(p) random variable X. We just
found that its expected value is p. So

V(X) := E[(X− µ)2]

= ∑
k∈{0,1}

(k− p)2P(X = k)

= (0− p)2(1− p) + (1− p)2(p)

= p2(1− p) + p(1− p)2

= p(1− p)[p + (1− p)]

= p(1− p)

3.4 Assume the random variable X has as its cdf

F(t) = P(X ≤ t) =


0 t < 1

1/3 t ∈ [1, 3)

1 t ≥ 3

Find the pmf for X. Then, find the expected value of X.

It is easy to show from the definition of variance that for any constant
a and random variable X,

V(aX) = a2V(X) and V(X + a) = V(X).

Another important fact about variances is that if X and Y are independent
random variables (the value of X does not tell you anything about the
value of Y and vice versa), then

V(X + Y) := V(X) + V(Y)

We can apply this fact to find the variance of a Binomial(n, p) random
variable X, again by expressing it as a sum of n independent Bernoulli(p)
random variables.

V(X) : = V(X1 + X2 + . . . + Xn)

= V(X1) + V(X2) + . . . + V(Xn)

= p(1− p) + p(1− p) + . . . + p(1− p)

= np(1− p)
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Any random variable X can be shifted by adding a constant to it. The
result X + c has a pmf (or pdf) that is identical to that of X, except that
every bar (or point on the curve) is shifted rightward by c. The expectation
of X + c is E(X) + c. Another common operation is rescaling X by multi-
plying it by a constant. To standardize X means to shift it by subtracting
its mean then rescale it by dividing by its standard deviation. The result
(X− µ)/σ has expectation zero and variance one.

E
(

X− µ

σ

)
=

1
σ
[E(X)− µ]

=
1
σ
[µ− µ]

= 0

V
(

X− µ

σ

)
=

1
σ2 V(X− µ)

=
1
σ2 V(X)

=
1
σ2 σ2

= 1

3.5 Assume X1, . . . , X40 are iid random variables, and X5 has ex-
pected value 3 and variance 7. Define Y := 10 + 2X1 + ∑40

i=2 Xi.
Find the expected value and the variance of Y.

3.1.4 Asymptotics

In Chapter 1, we pointed out a key insight that makes inference possible: a
random sample tends to resemble the population it was drawn from, and
the larger the sample, the stronger the resemblance tends to be. Now that
we’ve covered probability distributions and expectations, you can begin to
understand more specifically what that statement means. Here we clarify
how it works for averages.

Assume X1, . . . , Xn are iid random variables, each with an expected
value9 µ and a finite variance σ2. Often a statistic of interest is the sample9 Because each Xi has the same dis-

tribution, they must all have the
same expected value and variance.

mean (or sample average)

X̄ :=
1
n
(X1 + . . . + Xn).

Realize that the sample mean is itself a random variable. It is an unknown
quantity with a probability distribution that depends on the probability
distributions of the unknown quantities that go into it.

Importantly, the expected value of X̄ is exactly equal to the expected
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value of the random variables it’s averaging.

E(X̄) = E
[

1
n
(X1 + . . . + Xn)

]
=

1
n
[E(X1) + . . . + E(Xn)]

=
1
n
[µ + . . . + µ]

=
1
n
[nµ]

= µ

Furthermore, the variance of X̄ is

V(X̄) = V(
1
n
(X1 + . . . + Xn))

=

(
1
n

)2
[V(X1) + . . . + V(Xn)]

=
1
n2 [σ

2 + . . . + σ2]

=
1
n2 [nσ2]

=
σ2

n
.

The variance gets smaller as the number of random variables being av-
eraged increases. In other words, the distribution of the sample mean X̄
becomes increasingly concentrated around µ as the sample size increases.
A more formal statement of this is called the Law of Large Numbers (LLN).

The LLN doesn’t tell you anything about the shape of X̄’s distribu-
tion. However, the Central Limit Theorem (CLT) says that the distribution
of X̄ increasingly resembles a Normal distribution as the sample size gets
larger. In particular, it resembles the Normal distribution with mean µ

and variance σ2/n (i.e. the mean and variance that we just derived for X̄).
It follows that the standardized version of X̄ has approximately a standard
Normal distribution: X̄−µ

σ/
√

n .
You may have noticed in Figure 3.1 that the Binomial(20, .5) pmf resem-

bles a bell curve. Figure 3.5 shows that pmf again, this time superimposed
in front of the Normal pdf with matching mean (µ = np = 10) and vari-
ance (σ2 = np(1− p) = 5).

n <- 20; p <- .5

grid <- seq(0, n, length.out=100)

plot(grid, sapply(grid, dnorm, mean=n*p, sd=sqrt(n*p*(1-p))),

type="l", col=4, ylab="")

k <- 0:n

pmf <- sapply(k, dbinom, size=n, prob=p)

points(k, pmf, col=3, type="h", ylim=c(0, max(pmf)))

This is a perfect example of the CLT at work. Why? Because a Binomial(20, .5)
random variable is simply a sum of 20 iid Bernoulli(p) random variables.
And the sum is proportional to the sample mean (∑ Xi = nX̄), so the



40 data analysis with r: the big picture

0 5 10 15 20

0.
00

0.
05

0.
10

0.
15

grid

Figure 3.5: The Normal(10, 5) pdf in
blue with the Binomial(20, .5) pmf
superimposed in green.

distributions of the sum and sample mean have the same shape, which
resembles a bell curve in this case.

As stated above, the CLT doesn’t tell you how large you need your sam-
ple size to be before the sample mean is well-approximated by a Normal
distribution. That depends on the distribution of the Xi random variables
that go into it, but many data analysts consider Normal approximations
reliable for sample sizes of at least 30.

Let’s see the CLT in action one more time using a simple simulation.
Consider the set of mp3s from the familiar computer files dataset.
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x <- read.csv("http://quantitations.com/book/formats-sizes.csv")

head(x)

## format size

## 1 jpg 0.78

## 2 doc 0.15

## 3 doc 0.19

## 4 jpg 0.01

## 5 mp3 9.23

## 6 mp3 4.54

y <- x$size[x$format=="mp3"]

length(y)

## [1] 1145

hist(y)

M <- mean(y)

M

## [1] 8.357773

abline(v=M, col=2)

Histogram of y
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There are 1145 mp3 files, and their mean size is about 8.36 MB. The his-
togram has a right-skewed shape. Imagine that I wanted to know the
mean size of this population, but (for some reason) it’s not possible for me
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to look at all of the file sizes. Instead I can only take a random sample of
100 of the files.10 Then it’s natural to use the sample mean to estimate the10 For the purposes of this example,

this random sample should be done
with replacement, meaning that once

a file has been selected it can still
get selected again. Othwerwise, the

files’ sizes would not be independent.

population mean. Let’s try this.

n <- 100

set.seed(1)

z <- sample(y, size=n, replace=T)

hist(z)

m <- mean(z)

m

## [1] 7.4678

abline(v=m, col=2)

Histogram of z
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The sample mean is 7.47 which is pretty close to the true population mean.
But let’s think about the distribution of this sample mean. According to
the CLT and our sample-size-30 rule of thumb, we might think that the
sample mean should be approximately Normally distributed. What does
this mean? It means that if we were to repeat the process of sampling
100 files over and over, the frequencies with which the sample mean takes
different values should have a bell-curve shape. Let’s try it out: repeat the
process 1000 times and draw a histogram of the 1000 sample means that
we calculate.
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set.seed(1)

N <- 1000

m <- rep(NA, N)

for (i in 1:N) {

z <- sample(y, size=n, replace=T)

m[i] <- mean(z)

}

hist(m)

abline(v=M, col=2)

Histogram of m
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As expected, the histogram of sample means is bell-shaped.11 11 I hope this example also demon-
strates to you the value of simulation,
which is one of the most powerful
tools available to modern statisticians
and data analysts.

The Normal distribution will play a key role in our inference tech-
niques. Remarkably, many real-world processes result in bell-shaped data.
Human heights are an example. In other words, a person’s adult height
is basically a draw from some Normal distribution. Why would this be?
The Central Limit Theorem provides the key to understanding this phe-
nomenon. It says that the sample mean of an iid sample has a distribu-
tion that increasingly resembles a Normal distribution as the sample size
increases. If the sample mean has a bell-curve shape, then so does the
sample sum. Your adult height is the sum total of a large number of your
genes and factors of your environment, each of which typically has a small
effect. These effects aren’t iid, of course, but actually generalizations of the
CLT have been proven that don’t strictly need iid random variables. In a
variety of cases, the distribution of a sum of random variables resembles a
normal distribution. Thus real-world quantities that are well-modeled as
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a sum of random variables tend to have bell-shaped histograms.

3.6 Explain the Law of Large Numbers (LLN) and the Central Limit
Theorem (CLT) in your own words. Then compare and contrast
them. (You only need to write a couple short paragraphs.)

3.2 Inference

In our discussion of probability, we assumed that we knew a probability
distribution and then answered questions about what draws from that
distribution would look like. Usually, in real life, we need to go the other
direction: all we have is the data, and we want to think about what its
distribution might be.

Inference is the process of deriving statements about a probability dis-
tribution based on data drawn from that distribution. There are three main
inference tasks that we will study.

1. Estimation means picking a “best" guess.

2. Hypothesis testing means deciding whether or not you should reject a
proposition.

3. A confidence interval is a “best" set of guesses along with a quantification
of your uncertainty.

3.2.1 Estimation

A statistic that is used as a guess for an unknown constant quantity is
called an estimator. The most common example is the sample mean X̄ of
an iid sample; it is often used as an estimator for the true mean µ of the
population. As you saw in Section 3.1.4, the expected value of X̄ is equal
to µ; thus we say that X̄ is an unbiased estimator12 for µ. In fact, X1 is also12 Don’t get too hung up on this prop-

erty. Unbiasedness is not a partic-
ularly important criterion for de-

ciding among possible estimators.

an unbiased estimator for µ (because µ is defined to be the expectation of
the Xi). So instead of using the mean of the whole sample, you could just
use the first observation to estimate µ. But recall from Section 3.1.4 that the
variance if X̄ is 1/n times the variance of X1. That means the distribution
of X̄ is more concentrated around µ than X1 is. In other words, X̄ is
probably going to be closer to µ than X1 is, so X̄ is a better estimator.

Often, you want to estimate the distribution of the observations. In such
cases, you usually confine your search to a parametric family of distribution,
such as the Normal distributions, and select the distribution among this
family that fits the data best, according to some criteria. Selecting a distri-
bution essentially means selecting values of the parameters that define the
family.

3.2.2 Hypothesis Testing

The logic behind hypothesis testing is similar to that behind proof by con-
tradiction. In a proof by contradiction, you assume a proposition is true,
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then show that logical contradictions follow from that assumption, thereby
revealing that the assumption can’t be true. In hypothesis testing, you as-
sume a proposition is true, then if the data clashes with that assumption,
you might conclude that the assumption is unlikely to be true after all.

The proposition that you assume is called the null hypothesis. How can
you tell whether the “data clashes with the assumption"? You need to
determine a statistic whose distribution you would know (or at least ap-
proximately know) if the null hypothesis were true. Then you calculate
that test statistic from your dataset. If the test statistic is far away from
where it “should" be, then that is taken as evidence against the null hy-
pothesis. Formally, we calculate the probability that the test statistic would
be at least as extreme as the value we observed; this probability is called
the significance probability (or the p-value). A low significance probability
indicates that the dataset would be unlikely to look the way it does if the
null hypothesis were in fact true. More precisely, letting p be the signifi-
cance probability that you calculated, you can say “if the null hypothesis
were true, the probability that the data would be at least as unusual as
what I’ve observed is p."

Sometimes a threshold for the significance probability is specified ahead
of time (often .05), that is used to decide whether or not the null hypoth-
esis should be rejected; this threshold is called the level of the test. If the
significance probability is below the threshold, then you reject the null hy-
pothesis (you have a “statistically significant result"); otherwise you fail to
reject the null hypothesis.13 13 Just because you failed to reject the

null hypothesis doesn’t necessarily
mean that you should think the null
hypothesis is actually true.

Let’s think through a simple example. Imagine that you want to decide
whether or not to believe that a coin is fair. You flip the coin 20 times
and get H, H, T, H, T, H, H, T, T, T, H, H, T, H, H, T, H, H, H, H. The null
hypothesis is p = .5. Assuming the null hypothesis is true, the distribution
of the number of heads is Binomial(20, .5); we’ll use the number of heads
X as our test statistic. There are 13 heads in this dataset, so the significance
probability is the probability that a Binomial(20, .5) random variable would
take a value at least as extreme as 13. Because the Binomial(20, .5) pdf is
symmetric about its mean of 10, any value from 13 to 20 or from 0 to 7
would count as being at least as extreme as our observed test statistic value
of 13. The significance probability is equal to the sum of the probabilities
of these values, highlighted in Figure 3.6.

drawPMF(20)

k <- c(0:7, 13:20)

pmf <- sapply(k, dbinom, size=20, prob=.5)

points(k, pmf, col=2, type="h", lwd=2, ylim=c(0, max(pmf)))

The significance probability is P(X ≤ 7) + P(X ≥ 13). First, observe
that14 14 Or observe by symmetry that P(X ≤

7) = P(X ≥ 13).

P(X ≥ 13) = P(X > 12)

= 1− P(X ≤ 12).

We can use the cdf to calculate this in R.
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Figure 3.6: The significance probability
is the sum of the heights of the red
bars.

pbinom(7, 20, .5) + (1 - pbinom(12, 20, .5))

## [1] 0.263176

The significance probability is about .26, meaning that the observed
number of heads isn’t all that unlikely from 20 flips of a fair coin. If we
want a threshold of .05, this test fails to reject the null hypothesis that the
coin is fair.

Of course, a 95% hypothesis test will not always give you the right
answer. That’s too much to ask! But when the null hypothesis is true, the
test has only a 1/20 chance of giving you the wrong answer (i.e. rejecting
the null hypothesis). This type of mistake is called a false positive.1515 The level of a hypothesis test dictates

what its false positive rate will be. The
false negative rate is important too, but

it is beyond the scope of this book.
3.7 A casino tells you that it uses a fair coin. As an experiment, you

toss the coin 50 times. What is the expected number of heads?
Suppose 20 of those tosses show heads (i.e. X = 20). What is the
significance probability? What does that mean? Do you feel that
your experiment provides solid evidence that the casino’s coin
isn’t fair? On the other hand, do you feel that your experiment
proves that the casino’s coin is fair?

Is your result significant at the .05-level? What all values of X
would be significant at the .05-level?

3.2.3 Confidence Intervals

Instead of selecting a single value to guess an unknown constant quantity
(i.e. estimation), you could select a set of numbers that hopefully contains
the true value. You first need to determine how likely you want it to be that
your set contains the true value. Typically, people want a 95% confidence
interval, a set of numbers that has a .95 probability of including the true
value. The more assurance you want, the larger your set of guesses must
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be.
You’ll see your first example of finding a confidence interval in Chap-

ter 7.

3.3 Conclusion

This chapter started with some basic definitions from probability theory,
particularly random variables and probability distributions. The field of prob-
ability is about describing how a data (modeled by random variables) will
behave based on their distribution. The field of statistical inference looks at
things in the other direction: start with known data and try to describe the
distribution that generated the data. We listed and defined three common
inference tasks: estimation, hypothesis testing, and confidence intervals.
Chapters 8 through 9 will present a number of common instances of these
tasks.





Part II

Description





4 Description of Quantitative Data

We begin our survey of descriptive data analysis by considering how to
treat quantitative variables, which correspond to columns of a data frame
in which each observation has a numerical measurement. In the descrip-
tive stage of data analysis, we want to better understand the observations
in our data set by calculating statistics and creating plots.

We will consider the descriptive analysis of one, two, or three quanti-
tative variables; in each case, we will describe some of the most common
and useful statistics and plots.

4.1 One Quantitative Variable

In a statistics class that I taught, there were five homework assignments,
four quizzes, and one final exam. The data is posted on the web.

# Read in the data from the web

x <- read.csv("http://quantitations.com/book/grades.csv")

# How many students are there?

# How many grades were given to each student?
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dim(x)

## [1] 15 10

# Display the first six rows of the data frame

head(x)

## Exam HW1 HW2 HW3 HW4 HW5 Quiz1 Quiz2 Quiz3 Quiz4

## 1 12 25 52 83 25 7 23 56 59 12

## 2 21 52 12 11 91 42 12 90 47 21

## 3 98 68 96 42 69 94 39 84 71 98

## 4 71 14 76 58 62 5 44 12 60 71

## 5 36 70 13 99 12 30 97 75 14 36

## 6 35 96 94 12 61 18 43 86 65 35

Now, let’s see what tools are available for the description stage, starting
with a look at the exam scores.

4.1.1 Statistics

There are only fifteen observations in the data frame, so let’s go ahead and
take a look at all the values in our variable of interest, Exam .

x$Exam

## [1] 12 21 98 71 36 35 21 33 75 49 15 27 2 38 92

You can get a better sense of the data by sorting the numbers.

sort(x$Exam)

## [1] 2 12 15 21 21 27 33 35 36 38 49 71 75 92 98

There are two main aspects of a quantitative variable that are often sum-
marized: location1 (where the numbers are) and spread (how far apart the1 Location is also known

as “center" in some books. numbers are from each other).
The most common statistic summarizing the location of the data is the

mean, the sum of the values divided by the number of observations. It’s
usually what people mean when they say “average." The mean is nice
because it is intuitive and familiar, but one drawback is that it is not ro-
bust. One unusual data point can make the mean go completely off-target.
For instance, pretend you have a dataset purporting to give five people’s
heights in meters.

heights <- c(1.8, 1.6, 1.6, 1.7, 190)

mean(heights)

## [1] 39.34

Obviously something is wrong with the data, because nobody is 190 me-
ters tall! Perhaps that height was recorded in centimeters by mistake.
Regardless, it only took one bad value to give you a bad mean. And this
is a real concern; in practice, wild data values are all too frequent.
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On the other hand, consider the median, the middle value of the sorted
numbers.2 In this case, the wild number doesn’t hurt us. 2 If there are an even number of obser-

vations, then you take the mean of the
two middle values.

median(heights)

## [1] 1.7

The median is sometimes preferred as it is more robust. In some cases
it is also more representative of what the observations actually look like.
As an example, imagine you want to summarize the incomes in a small
town of 100 people; 99 of them make 25 thousand dollars per year while
the other one makes 100 million. The mean income is about a million
dollars, but reporting that might give a very misleading impression of the
situation. There is actually nobody in the town who is well-described by
the mean. On the other hand, the median income of 25 thousand dollars
does accurately describe 99 of the 100 people.

The quartiles extend the idea of the median to devise additional statis-
tics that give other details about the variable’s location. The median is a
number that splits the sorted data values in half. You can also split those
halves in half again. A number that splits the lower half is called the first
quartile, while a number that splits the upper half is the third quartile.3 If 3 I won’t describe precisely how to

calculate these quartiles because there
is some disagreement about it. It’s fine
to just use whatever quartiles R tells
you.

about a quarter of the data lies below the first quartile, and a quarter lies
above the third quartile, that means the “middle half" the data lies be-
tween these quartiles. So knowing the median and the quartiles gives you
a pretty good summary of the variable’s location.4 4 The 1/4, 1/2, and 3/4 data values

are intuitive, but sometimes you might
be interested in splitting the data into
other proportions. The more general
notion is called a quantile or a percentile
if you’re using percentages.

The location statistics we have discussed are calculated by the summary

command.

summary(x$Exam)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 2.00 21.00 35.00 41.67 60.00 98.00

Next, we will cover two statistics that are often used to summarize
the “spread" of a quantitative variable. When the mean is reported to
summarize location, typically an estimate of standard deviation is reported
to summarize spread.5 In R, the sd command gives us this quantity; 5 The quantity calculated by R is an

estimate of the population’s standard
deviation, assuming the data is ran-
domly sampled. Even if we don’t care
about inference, this quantity still gives
us an indication of spread.

to calculate it manually, take the sum of the squared deviations from the
sample mean, divide by the number of observations minus one, then take
the square root of the result. If the variables values are x = (x1, . . . , xn)

and x̄ represents the sample mean, then the estimated standard deviation
is

σ̂ :=

√
1

n− 1 ∑(xi − x̄)2

# The estimated standard deviation

sd(x$Exam)

## [1] 29.43678
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# Calculating the same quantity manually

n <- length(x$Exam)

m <- mean(x$Exam)

SS <- sum((x$Exam-m)^2)

sqrt(SS/(n-1))

## [1] 29.43678

The other common statistic for spread is the interquartile range (or IQR),
which is the third quartile minus the first quartile. It tells you how wide
of an interval you would need to cover the middle half of the data.66 Don’t confuse this with the

range, which is the interval
from the minimum data point

to the maximum data point.
s <- summary(x$Exam)

names(s)

## [1] "Min." "1st Qu." "Median" "Mean" "3rd Qu." "Max."

IQR <- as.numeric(s["3rd Qu."] - s["1st Qu."])

IQR

## [1] 39

Ultimately, the statistics that you calculate will depend on the purpose
of your data analysis. You may even want to “make up" a statistic that we
haven’t talked about here if it’s relevant to your questions. Remember: be
creative!

4.1.2 Plots

A histogram is a simple plot to help you visualize one quantitative variable.
It divides the range into “bins" and places a bar above each bin with height
equal to the number of data points in that subinterval.

hist(x$Exam, main="Students' Exam Grades")
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This tell us that there were three students with scores between 30 and 40,
three students with scores between 40 and 50, six students with scores
between 50 and 60, and so on. If you really want to, you can tell R how
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to split the range up into bins,7 but I’ve found that R’s default behavior is 7 Use help(hist) for details.

typically fine.
Similar to the histogram is the density plot. It is a “smoothed-out" curve

that resembles the histogram and is normalized to have a total area under
the curve equal to 1.

plot(density(x$Exam), main="Students' Exam Grades")
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One common feature to look for in histograms is a bell curve shape. The
“bell curve" refers to the shape of the Normal distribution’s probability
density function, shown in Figure 4.1. In this idealized case, two thirds of
the data points are within one standard deviation of the mean, 95 percent
of the data points are within two standard deviations of the mean, and
over 99 percent of the data points are within three standard deviations of
the mean. These quantities, more specifically (68%, 95%, 99.7%), are good
to remember.

# Draw the standard normal density curve

grid <- seq(-3, 3, length.out=100)

plot(grid, sapply(grid, dnorm), type="l", col=4,

xlab="x", ylab="density", main="Standard Normal Density")

Often the histograms and density plots of real data will have this same
basic shape, with the bulk of the data points together near the center and
a roughly symmetric tails extending outward to either side in roughly
a (68%, 95%, 99.7%) distribution.8 Figure 4.2 gives an idealized example 8 Chapter 3 discusses why many real-

world random quantities tend to be
like the Normal.

showing 100 simulated draws from an actual standard normal distribu-
tion.

set.seed(1)

y <- rnorm(100)

hist(y, main="100 Draws from N(0, 1)")

Recognizing the bell curve shape will return to play a major role when we
cover inference for quantitative variables. For the description stage, realize
that identifying data as bell-shaped is an important part of your summary.
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Figure 4.1: The standard Normal
distribution’s probability density
function on the interval from -3 to 3.
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Figure 4.2: Histogram of 100 indepen-
dent draws from the Standard Normal
distribution.
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Another common shape for histograms is having most of the data points
close together and a heavy tail in one direction.9 Often you find this prop- 9 The sample is said to be skewed in the

direction of the heavy tail.erty with data that has a natural cutoff on one side but no bound on the
other side, such as variables that can only take positive values. Income is
a classic example, as shown in Figure 4.3.

library(np)

## Nonparametric Kernel Methods for Mixed Datatypes (version 0.60-9)

## [vignette("np_faq",package="np") provides answers to frequently

asked questions]

## [vignette("np",package="np") an overview]

## [vignette("entropy_np",package="np") an overview of entropy-based

methods]

data(wage1)

dim(wage1)

## [1] 526 24

names(wage1)

## [1] "wage" "educ" "exper" "tenure" "nonwhite" "female"

## [7] "married" "numdep" "smsa" "northcen" "south" "west"

## [13] "construc" "ndurman" "trcommpu" "trade" "services" "profserv"

## [19] "profocc" "clerocc" "servocc" "lwage" "expersq" "tenursq"

hist(wage1$wage)
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Figure 4.3: The histogram shows 526

observations of hourly wage sampled
randomly from the 1976 U.S. Current
Population Survey. This data does not
resemble a bell-shaped curve; it has a
heavy tail on the right side.

Often we can take a simple transformation (such as a logarithm or a square
root) of each of the data points to produce data values that are closer to
a bell curve. We will take the natural logarithm transformation of the
incomes and see what happens.
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log.wage <- log(wage1$wage)

hist(log.wage)

summary(log.wage)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## -0.6349 1.2030 1.5369 1.6233 1.9286 3.2181

Figure 4.4: The histogram shows the
logarithms of the 526 incomes. It

more closely resembles a bell curve
than the original histogram did.
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Why would we want to do that? What’s so good about bell curves? For
now, just think of them as being easy to summarize. If I say that the
log incomes have a bell curve shape and I report the summary to you,
that gives you a pretty good idea of the shape of the data, even without
seeing Figure 4.4. It would be much harder for me to concisely convey
the general shape of the original income data in Figure 4.3. The more
important reason to make this transformation will become clear when we
discuss inference (Part III), where bell curves will play a central role.

Finally, several of the statistics we’ve described are visible on a boxplot,
which is demonstrated in Figure 4.5. The box represents the middle half
of the data: the top side is the third quartile, the bottom side is the first
quartile, and the horizontal line in-between is the median.10 The upper10 It follows that the vertical

length of the box is the IQR. and lower vertical lines extending from the box reach as far as the most
extreme data value that is within 1.5∗IQR of the box. Data points beyond
that distance from the box are considered outliers and plotted separately.1111 In general, there’s no single hard

definition of “outlier." It’s more of a
subjective term for any data point that

seems far from the bulk of the data.
# Recall the "summary" command from earlier

summary(x$Exam)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 2.00 21.00 35.00 41.67 60.00 98.00

# Compare the summary output to the boxplot

boxplot(x$Exam, main="Students' Exam Scores")

Figure 4.5 has no outliers, but a second example Figure 4.6 has three.
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Figure 4.5: The boxplot displays a
summary of the shape and loca-

tion of the student’s exam scores.
The middle half of students scored

in the 20 to 60 range, but overall
the range of grades spans almost
the entire interval from 0 to 100.
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set.seed(1)

y <- rexp(30)

boxplot(y, main="30 Draws from Exp(1)")
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30 Draws from Exp(1)
Figure 4.6: A boxplot of thirty num-
bers randomly generated by R ac-
cording to the standard exponential
distribution.

Every data analyst will regularly find outliers in the course of his or
her work, and such points often require special attention. In some cases,
there may have been a mistake on the part of the person recording the
data. Other times, they are particularly interesting cases that are relevant
to the question you’re trying to answer. Depending on how far out the
outliers are, you sometimes want to exclude them from the analysis of the
rest of the data. Otherwise, the outliers can have a disproportionate effect
on your summary.12 12 Recall our discussion of the mean’s

lack of robustness.
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4.2 Two Quantitative Variables

Continuing with the grades data, let’s pose a specific problem. Imagine
that my goal is to assign letter grades to the students in a sensible way.
This is an example of a data analysis task in which I am only interested in
the observations at hand. I have no desire to speculate about any individ-
uals who weren’t in the dataset, so there would be no inference stage to
this data analysis.

The students were told that the lowest quiz score would be dropped,
and that the final exam counts as three quizzes. Using those two rules,
we can calculate a homework average and a quiz/exam average for each
student.1313 The operations to calculate

these averages are included for
the sake of completion, but don’t
worry about understanding them

for now. Keep your focus on
understanding the main ideas.

# Calculate each student's homework average and quiz/exam average

x$HW.avg <- apply(x[, 2:6], 1, mean)

x$Quiz.avg <- (apply(x[, 7:10], 1, sum) - apply(x[, 7:10], 1, min))/3

x$Quiz.avg <- (x$Quiz.avg + x$Exam)/2

# We have created two additional variables in the data frame

head(x)

## Exam HW1 HW2 HW3 HW4 HW5 Quiz1 Quiz2 Quiz3 Quiz4 HW.avg Quiz.avg

## 1 12 25 52 83 25 7 23 56 59 12 38.4 29.00000

## 2 21 52 12 11 91 42 12 90 47 21 41.6 36.83333

## 3 98 68 96 42 69 94 39 84 71 98 73.8 91.16667

## 4 71 14 76 58 62 5 44 12 60 71 43.0 64.66667

## 5 36 70 13 99 12 30 97 75 14 36 44.8 52.66667

## 6 35 96 94 12 61 18 43 86 65 35 56.2 49.83333

4.2.1 Statistics

We’ve already covered the common statistics for characterizing a single
quantitative variable. Now that we’re looking at two quantitative vari-
ables together, we’ll discuss correlation and the (closely related) least-
squares line, both of which help us understand the relationship between
the variables. The correlation formula looks a little complicated. Let x =

(x1, . . . , xn) and y := (y1, . . . , yn) denote two variables (columns of our
data frame). And define x̄ and ȳ to be the means of the respective vectors.

cor(x, y) := ∑[(xi − x̄)(yi − ȳ)]√
∑(xi − x̄)2

√
∑(yi − ȳ)2

Of course, in practice you let R do this calculation for you.

cor(x$HW.avg, x$Quiz.avg)

## [1] 0.6962957

The correlation indicates the linear14 relationship between the variables;14 Technically, the term is affine
linear when the line is allowed
to have a non-zero y-intercept.

it always takes a value between -1 (exact negative linear relationship) and
1 (exact positive linear relationship). This point becomes clearer in the
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context of the least-squares line. The least-squares line is the line (ax + b
for some a and b, which are known as parameters) that is closest to the
data points in a specific sense.15 In particular, it minimizes the sum of 15 This will make more sense once

you’ve seen scatterplots in the next
section.

the squared residuals, where the residuals are the differences between the
y-values and the fit, in this case

ri := yi − (axi + b).

Let us use â and b̂ to denote the slope and intercept (the two parameter
values) of the least-squares line (i.e. the line minimizing ∑ r2

i ). It can be
shown that

â = cor(x, y)
σ̂y

σ̂x
and b̂ = ȳ− âx̄

where σ̂x and σ̂y represent the estimated standard deviations of x and y as
described in Section 4.1.1. Think of the line as a way of predicting a value
for yi once you know xi; call the prediction ŷi.

ŷi := âxi + b̂

Plugging in â and b̂ and rearranging, this equation can also be written as

ŷi − ȳ
σ̂y

= cor(x, y)
xi − x̄

σ̂x

The quantity xi−x̄
σ̂x

represents the number of standard deviations above the
mean the ith observation’s x-value is. The correlation tells you what to
multiply this by to predict the number of standard deviations above the
mean that the y-value will be. For instance, in our grades example, we
found that the correlation between homework average and quiz average
was about 0.7. Therefore, if you learn that Jack’s homework average was
two standard deviations above the mean, then the least-squares line pre-
dicts that Jack’s quiz average is 1.4 standard deviations above the mean.
The lm command16 in R tells you the coefficients of the least-squares line. 16 “lm" stands for “linear model."

lm(x$Quiz.avg ~ x$HW.avg)

##

## Call:

## lm(formula = x$Quiz.avg ~ x$HW.avg)

##

## Coefficients:

## (Intercept) x$HW.avg

## -4.2967 0.9955

We’ll return to this command when we cover inference for quantitative
variables in Chapter 7.

When finding a least-squares line17, you have to choose one variable to 17 This process is also known as simple
linear regression.play the role of the “y" variable (called the response variable) and another to

play the role of the “x" variable (called the explanatory variable). Typically,
if one variable intuitively seems more like it, in part, explains the behavior
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of the other variable, then this explaining variable is typically used as
the explanatory variable.18 In our example of homework averages and18 However, sometimes you are plan-

ning to get future measurements
of one variable and you want to

use them to predict the value of the
other variable. In that case, the vari-
able that you will get future data on
should be the explanatory variable.

quiz averages, one might think that working hard on homework improves
a student’s quiz scores; thus homework average seems like a somewhat
more natural choice to be the explanatory variable.

A final statistic that we will discuss is called R2. It is defined to be 1

minus the ratio of the the variance of the residuals over the variance of the
orginal response variable y.1919 Variance was defined in Chap-

ter 3. It is the average squared
deviation from the mean.

R2 := 1− (1/n)∑(ri − r̄)2

(1/n)∑(yi − ȳ)2

where n is, of course, the sample size, and r̄ is, of course, the mean of the
residuals.20 You can think of it as the proportion of “variation" remaining20 The 1/n cancels out, so you could

just write this as a ratio of the sums
of squared deviations. Also, in the

least-squares procedure discussed in
this chapter, it turns out that the mean

of the residuals will be exactly zero.

in the data after fitting. In the case of a straight line fit for two variables,
R2 turns out to be equal to the squared correlation.

cor(x$HW.avg, x$Quiz.avg)^2

## [1] 0.4848277

We’ve discussed statistics that summarize the linear relationship be-
tween two quantitative variables. But the relationship between the vari-
ables may not be well-captured by a line. Let’s see what plots are available
to help us figure this out.

4.1 If the correlation between two variables representing tempera-
ture (in degrees Celsius) and length (in meters) is equal to r,
then find the correlation between temperature (measured in de-
grees Farenheit) and length (in centimeters) in terms of r. Show
your work. Note that

degrees Farenheit = 32 + (9/5) ∗ (degrees Celsius).

4.2 The following code generates two variables, v and w . Using
the R output, find the least-squares line.
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n <- 20

set.seed(1)

v <- rnorm(n)

w <- 3 - 5*v + 4*rnorm(n)

z <- data.frame(v=v, w=w)

head(z)

## v w

## 1 -0.6264538 9.808179

## 2 0.1836433 5.210329

## 3 -0.8356286 7.476403

## 4 1.5952808 -12.933811

## 5 0.3295078 3.831764

## 6 -0.8204684 6.877827

apply(z, 2, mean)

## v w

## 0.1905239 2.0214945

apply(z, 2, sd)

## v w

## 0.9132537 6.3184890

cor(z)

## v w

## v 1.0000000 -0.8426766

## w -0.8426766 1.0000000

4.2.2 Plots

The scatterplot is simple but incredibly useful; it draws each (xi, yi) pair
(each observation’s x and y values) as a point on the two-dimensional
plane.

# Scatterplot of students' averages

plot(x$HW.avg, x$Quiz.avg, col=4, xlab="Homework Average",

ylab="Quiz/Exam Average", main="Grades")



64 data analysis with r: the big picture

40 50 60 70

30
40

50
60

70
80

90

Grades

Homework Average

Q
ui

z/
E

xa
m

 A
ve

ra
ge

We see immediately that students with higher homework averages also
tend to have higher quiz averages. And in fact, a straight line would
summarize the relationship between these variables fairly well. In fact,
let’s see the scatterplot again, this time with the least-squares line drawn
in.

plot(x$HW.avg, x$Quiz.avg, col=4, xlab="Homework Average",

ylab="Quiz/Exam Average", main="Grades")

fit <- lm(x$Quiz.avg ~ x$HW.avg)

abline(fit$coefficients, col=3)
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Next, let’s look at a residual plot where we do a scatterplot with the resid-
uals in place of the y-values.21 21 For many authors, a “residual plot"

puts the predicted values (the ŷ-
values) on the horizontal axis. I prefer
to put the original explanatory vari-
ables on the horizontal axis instead.
However, when there are multiple ex-
planatory variables (as we’ll see in the
upcoming section), it probably makes
more sense to use the predicted value
on the horizontal axis.

plot(x$HW.avg, fit$residuals, col=4, xlab="Homework Average",

ylab="Quiz/Exam Average Residuals", main="Grades")

abline(h=0, lty=2)
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Residual plots help you determine if there are any interesting patterns
remaining in your data after you have done a fit. If the data looks like
random fluctuations from zero, then there is no more “pattern" left to
squeeze out of the data. In our case, there does seem to be an up-down-
up pattern remaining. It looks a bit like some sort of cubic curve, a curve
with an equation of the form y = ax3 + bx2 + cx + d for some (a, b, c, d).
In fact, we can find the least-squares cubic curve with the exact same lm

command. Let’s go back and try a cubic fit instead.

fit2 <- lm(x$Quiz.avg ~ x$HW.avg + I(x$HW.avg^2) + I(x$HW.avg^3))

fit2$coefficients

## (Intercept) x$HW.avg I(x$HW.avg^2) I(x$HW.avg^3)

## -4.875135e+02 3.056349e+01 -5.817587e-01 3.679261e-03

grid <- seq(min(x$HW.avg), max(x$HW.avg), length.out=100)

curve <- fit2$coefficients[1] + fit2$coefficients[2]*grid +

fit2$coefficients[3]*grid^2 + fit2$coefficients[4]*grid^3

plot(x$HW.avg, x$Quiz.avg, col=4, xlab="Homework Average",

ylab="Quiz/Exam Average", main="Grades")

lines(grid, curve, col=3)
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This cubic curve follows the pattern of the data better. Rounding each co-
efficient to two significant digits, the equation for the curve summarizing
the relationship is (letting y represent quiz/exam average and x represent
homework average)

y = −490 + 31x− 0.58x2 + 0.0037x3

The resulting residual plot that looks a lot more like random noise.22 22 Another option when the relation-
ship isn’t linear is to transform one
or both of the variables (e.g. take the
natural logarithm of all the y-values) to
get a plot in which the points do seem
to have a more linear relationship.
If you can find a simple transforma-
tion resulting in a linear relatinship,
then you can calculate the ordinary
least-squares line for relating the
transformed variables.

plot(x$HW.avg, fit2$residuals, col=4, xlab="Homework Average",

ylab="Quiz/Exam Average Residuals", main="Grades")

abline(h=0, lty=2)
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Be careful here! The point is to summarize the data, not to draw a best-
fitting curve you can think of. Otherwise, we could have just drawn a com-
plicated curve that wiggles around and goes through all the data points!
But that wouldn’t summarize the data well, because it isn’t simplifying
anything!2323 This trade-off between fit

and simplicity is considered by
some to be one of the central

unifying concepts of statistics.

Most of the analysis above was only done to demonstrate the process;
it isn’t actually relevant to my goal. Recall that my purpose is to assign
grades in a way that I think is sensible. Let’s redraw the original scatter-
plot, this time drawing the observation numbers in place of dots so that
we can identify the points.

# Scatterplot of students' averages with labels

plot(x$HW.avg, x$Quiz.avg, type="n", xlab="Homework Average",

ylab="Quiz/Exam Average", main="Grades")

text(x$HW.avg, x$Quiz.avg, labels=rownames(x), col=4, cex=1.2)
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Points in the top right are the best; points in the bottom left are the worst.
Any pair of students who did about the same (points close to each other)
should get the same grade. Let’s come up with sensible groupings based
on that idea. The three points in the upper right seem to stand out from
the rest; those will be the A’s. The rest of my grade assignments can be
seen in the code below.

# Assign grades based on sensible grouping

A <- c(3, 9, 15)

Am <- c(6, 10, 11, 12)

Bp <- c(4, 5, 13, 14)

B <- c(2, 8)

Bm <- c(1, 7)

plot(x$HW.avg, x$Quiz.avg, type="n", xlab="Homework Average",

ylab="Quiz/Exam Average", main="Grades")

text(x$HW.avg[A], x$Quiz.avg[A], labels=rownames(x)[A], col=2, cex=1.2)

text(x$HW.avg[Am], x$Quiz.avg[Am], labels=rownames(x)[Am], col=3, cex=1.2)

text(x$HW.avg[Bp], x$Quiz.avg[Bp], labels=rownames(x)[Bp], col=4, cex=1.2)

text(x$HW.avg[B], x$Quiz.avg[B], labels=rownames(x)[B], col=5, cex=1.2)

text(x$HW.avg[Bm], x$Quiz.avg[Bm], labels=rownames(x)[Bm], col=6, cex=1.2)

legend("topleft", legend=c("A", "A-", "B+", "B", "B-"),

text.col=2:6, fill=2:6)
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Job done.

4.3 There are 15 students in a statistics class. Their scores are con-
tained in the following dataset.

x <- read.csv("http://quantitations.com/book/grades2.csv")

head(x)

## Exam HW1 HW2 HW3 HW4 HW5 Quiz1 Quiz2 Quiz3 Quiz4

## 1 63 74 81 21 7 72 1 15 42 63

## 2 96 35 13 39 64 91 13 7 42 96

## 3 80 68 97 21 37 63 18 15 25 80

## 4 57 86 66 76 45 51 80 49 22 57

## 5 90 60 95 69 61 65 73 35 48 90

## 6 80 35 12 22 12 33 93 71 66 80

Run the same R commands shown previously to calculate
homework and quiz/exam averages and to make a scatterplot
of these two averages.

Decide how you want to assign grades to the class and make a
colorful plot like mine. Obviously there’s no one “right" answer
— just do something sensible and explain your reasoning with
a few sentences.
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Example 4.2.1. Often you want to draw a scatterplot with consecutive
data points connected by line segments, especially when the explanatory
variable is time. For example, the plot below shows the number of airline
passengers each month from the beginning of 1949 to the end of 1960.

#help(AirPassengers)

head(AirPassengers)

## [1] 112 118 132 129 121 135

t <- seq(1949, 1960+11/12, by=1/12)

x <- data.frame(time=t, passengers=AirPassengers)

plot(x$time, x$passengers, type="l", col=4)
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Clearly there is a certain regularity to the picture. The number of passen-
gers is generally increasing, but it also seems to have a periodic pattern
by month. Let’s try to capture the increasing trend first. The least-squares
line looks pretty good.

plot(x$time, x$passengers, type="l", col=4)

fit1 <- lm(passengers ~ time, data=x)

abline(fit1, col=2)
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But when we look at the residuals, there’s a down-up curvature left over.

plot(x$time, fit1$residuals, type="l", col=4)
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A quadratic fit, however, seems to capture the trend nicely.

plot(x$time, x$passengers, type="l", col=4)

fit1 <- lm(passengers ~ time + I(time^2), data=x)

grid <- seq(min(x$time), max(x$time), length.out=100)

lines(grid, fit1$coef[1] + fit1$coef[2]*grid + fit1$coef[3]*grid^2, col=2)
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plot(x$time, fit1$residuals, type="l", col=4)
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Figure 4.7: Residuals from the least-
squares quadratic fit.

Next, we will pursue an iterative fitting strategy. Iterative fitting means
repeatedly fitting the residuals.

y = fit1 + residuals1

residuals1 = fit2 + residuals2

...

residualsk−1 = fitk + residualsk

Putting the equations together, the overall result of iterative fitting is

y =
k

∑
i=1

fiti︸ ︷︷ ︸
overall fit

+ residualsk︸ ︷︷ ︸
overall residuals
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So we want to fit the residuals shown in Figure 4.7. There is clearly pe-
riodic behavior, but the scale of these fluctuations is also increasing over
time. Let’s try to figure out the nature of the scale increase first. After a
bit of experimentation, you will find that the peaks are usually happening
in the month of July.

july <- seq(7, 144, by=12)

plot(x$time, fit1$residuals, type="l", col=4)

points(x$time[july], fit1$residuals[july], col=3)
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In fact, let’s just look at the July points to see if we can fit their increase over
time, hoping that it is representative of the overall scale of fluctuations.

plot(x$time[july], fit1$residuals[july])
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A quadratic curve seems appropriate here, except for the three points
that appear to be shifted upward. We can actually fit a quadratic curve
along with a an extra constant parameter to accomodate those shifted data
points.
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fit.july <- lm(fit1$residuals[july] ~ time[july] + I(time[july]^2) + I(time[july] > 1955 & time[july] < 1958), data=x)

grid <- seq(min(x$time), max(x$time), length.out=100)

plot(x$time[july], fit1$residuals[july])

lines(grid, fit.july$coef[1] + fit.july$coef[2]*grid

+ fit.july$coef[3]*grid^2 + fit.july$coef[4]*(grid > 1955 & grid < 1958), col=2)
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Now we will use this curve to rescale all of the residuals.

rescale <- fit.july$coef[1] + fit.july$coef[2]*x$time +

fit.july$coef[3]*x$time^2 +

fit.july$coef[4]*(x$time > 1955 & x$time < 1958)

residuals1.rescaled <- fit1$residuals/rescale

plot(x$time, residuals1.rescaled, type="l", col=4)
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That worked well; the periodic fluctuations in these rescaled residuals
don’t seem to be getting larger or smaller over time.24 At last, we can try 24 The fluctuations are a little smaller

in the years that we allowed a shift
parameter, but that’s okay; it’s not
much smaller.

to fit the periodic behavior. It’s not really smooth enough to be a simple
sine curve.25 A simple thing we can do is just fit a prediction for each

25 Maybe a superposition of a few
sine curves would work well, but that
seems a little too advanced for this
book.

month; the obvious choice is to just take the means. For instance, we will
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predict all January points with the mean of the January points, and so on.

d <- matrix(residuals1.rescaled, ncol=12, byrow=TRUE)

means <- apply(d, 2, mean)

plot(x$time, residuals1.rescaled, type="l", col=4)

lines(x$time, rep(means, 12), col=2)
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Looks good. Now let’s look at the next set of residuals.

residuals2 <- residuals1.rescaled - rep(means, 12)

plot(x$time, residuals2, type="l", col=4)
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There’s not much pattern left to squeeze out of the data, as far as I’m
concerned. That means we’re done fitting. Now, let’s piece together our
overall fit and see how it looks in comparison to the original data.

fit <- fit1$coef[1] + fit1$coef[2]*x$time + fit1$coef[3]*x$time^2 +

rescale*rep(means, 12)

plot(x$time, x$passengers, type="l", col=4)
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lines(x$time, fit, col=3)
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Beautiful! What’s the R2?

1 - var(residuals2)/var(x$passengers)

## [1] 0.9999966

First, we used three parameters in our quadratic fit of the overall trend.
Next, we used sixteen parameters on the periodic fit: four parameters for
its change in scale over time and another twelve parameters for the peri-
odic behavior. In total, we used nineteen parameters to construct a fit that
reduced the variability in the 144 data points by about 99.9997%. While
we’ve fit the data well, we haven’t actually explained why the number of
airline passengers has behaved the way it has over this time period. Some-
one with more knowledge of the situation might offer a hypothesis that
comports with the data. We also haven’t made any claims that the number
of airline passengers will continue tracking along our fit curve. If you had
to guess the number of airline passengers over the next couple years after
the data ends, this curve offers a good starting point. But you never really
know what the future will hold, especially once you start looking five or
ten years ahead.

Finally, when your data set has more than two quantitative variables,
you may want to make a scatterplot for every pair of them. A pairs plot
arranges all of these scatterplots into a matrix shape.26 26 If you have too many variables, R’s

pairs plots will be too small to read.
In that case, you might want to just
run pairs on selected subsets of your
variables at a time.

#help(trees)

head(trees)

## Girth Height Volume

## 1 8.3 70 10.3

## 2 8.6 65 10.3

## 3 8.8 63 10.2

## 4 10.5 72 16.4
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## 5 10.7 81 18.8

## 6 10.8 83 19.7

pairs(trees)
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For each scatterplot, the variable plotted on the horizontal axis is the one
whose name appears in the same column as the plot; the variable plotted
on the vertical axis is the one whose name appears in the same row as the
plot.

4.3 Three Quantitative Variables

The trees dataset that you just saw has three quantitative variables. When
dealing with more than two quantitative variables, you can look at each
pair as was done in the pairs plot. Another example of this is the correlation
matrix, which displays the correlations between each pair of variables.

cor(trees)

## Girth Height Volume

## Girth 1.00000 0.51928 0.96712

## Height 0.51928 1.00000 0.59825

## Volume 0.96712 0.59825 1.00000

But that’s really nothing new because each correlation only involves two
variables. We’ll now explore ways of analyzing all three of these variables
together.
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4.3.1 Statistics

When we had two variables, we imagined each observation is a point in
the two-dimensional plane. Now that we have three variables, we can
instead imagine them as points in a three-dimensional plane. And instead
of finding a least-squares line that predicts one response variable as a
function of one explanatory variable, we can find the least-squares plane that
predicts one response variable as a funcion of two explanatory variables.27 27 This idea generalizes to any number

of variables. You can choose one to be
the response variable, and construct
a least-squares fit as a function of the
rest. In fact, “least-squares plane" is
not a common term becuase fitting
with more than one explanatory
variable is usually just called “multiple
regression."

We will denote the two explanatory variables’ axes as x1 and x2. The least-
squares plane will correspond to an equation of the form y = a + bx1 +

cx2. We just need to find the (a, b, c) that minimizes the sum of squared
residuals. Again, the lm command does just what we’re looking for.28

28 This bit of code demonstrates a
slightly different way of telling R
which variables you want to use.
Remember, R usually has lots of
different ways of doing the same task.

In the trees dataset, it seems most natural to think of the volume of
timber in the tree as being a mostly result of its girth and height. There-
fore, we will treat Volume as the response variable, with Girth and Height

as the explanatory variables.

fit <- lm(Volume ~ Girth + Height, data=trees)

fit$coefficients

## (Intercept) Girth Height

## -57.98766 4.70816 0.33925

To two significant digits, the least-squares plane summarizing the relation-
ship is

Volume = −58 + 4.7 ∗Girth + 0.34 ∗Height

Again, we can calculate the R2 of this least-squares plane fit, telling us
what proportion of the variation in Volume is explained by Girth and
Height together.

1 - var(fit$residuals)/var(trees$Volume)

## [1] 0.94795

4.3.2 Plots

Your first thought may be to extend the scatterplot idea by adding an extra
dimension to it. In fact, sometimes people do use these “3-D scatterplots,"
but they’re not as useful as you might think. When you try to draw the
3-D picture on a 2-D plane, it’s difficult to convey the depth that each data
point is supposed to have.29 Instead, I prefer to plot the two explanatory 29 There are some clever bits of soft-

ware (such as the R package rgl) that
let you rotate the image around to
see the positions of the points well.
On the downside, you still can’t print
out these plots easily if you need to
prepare a report.

variables on a two-dimensional plane and then use a color gradient to
indicate the value of the response variable. We will call such a picture
a color gradient scatterplot. I’ve uploaded a bit of R code that includes a
function called CGSplot to make color gradient scatterplots. Running the
following code will read the function into your R environment.30

30 Type the url below into your browser
if you want to see the code. If you
ever have a problem running this
function on your data, you can always
download the code and try modifying
it to suit your needs.
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source("http://quantitations.com/book/CGSplot.R")

Now, let’s see the function in action on our trees data.

d <- trees

CGSplot(d$Girth, d$Height, d$Volume, pch=19, cex=1.6,

xlab="Girth (inches)", ylab="Height (ft)",

zlab=expression(Volume~(ft^3)),

main="Volume of Timber in Black Cherry Trees")
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It was easy to overlay the least-squares line on top of the scatterplot in
Section 4.2.2. It’s not as easy to add our least-squares plane to the plot.
But I’ve written some code below that will add the fit’s level curves to the
color gradient scatterplot.3131 This code is probably going to

be challenging for you to follow, if
you’re a beginner. I recommend not

paying too much attention to it on
your first pass through the book.

fcontour <- function(x, y, f, size=50, ...) {

xgrid <- seq(min(x), max(x), length.out=size)

ygrid <- seq(min(y), max(y), length.out=size)

z <- matrix(NA, size, size)

for(i in 1:size) {

for(j in 1:size) {

z[i, j] <- f(xgrid[i], ygrid[j], ...)

}

}

contour(xgrid, ygrid, z, nlevels=6, add=TRUE)

}
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plane <- function(x1, x2, abc) {

return(abc[1] + abc[2]*x1 + abc[3]*x2)

}

CGSplot(d$Girth, d$Height, d$Volume, pch=19, cex=1.6,

xlab="Girth (inches)", ylab="Height (ft)",

zlab=expression(Volume~(ft^3)),

main="Volume of Timber in Black Cherry Trees")

fcontour(d$Girth, d$Height, plane, abc=fit$coefficients)
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Each curve tells you what Volume the least-squares plane predicts at those
points.

Although fitting a linear function of the explanatory variables is often
fruitful, you may sometimes be able to use prior knowledge of the system
to guess a type of function that works better. In this case, we’re trying to
predict the volume of a tree’s usable timber. Volume should be approxi-
mately height times area; area should be proportional to girth squared.32 32 This is because area is proportional

to the radius squared, and the radius
is proportional to the girth (i. e.
circumference).

So let’s try to fit an equation of the form

Volume = a + b ∗Height ∗Girth2

using the lm command and compare it to our linear fit.

fit2 <- lm(Volume ~ I(Height*Girth^2), data=trees)

fit2$coefficients
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## (Intercept) I(Height * Girth^2)

## -0.2976794 0.0021244

1 - var(fit2$residuals)/var(trees$Volume)

## [1] 0.97777

We’ve achieved a larger R2 while using fewer parameters, which is almost
always preferable and certainly so in our case due to the easy interpreta-
tion of this equation. Let’s plot the level curves for this fit too.

volume.surface <- function(x1, x2, ab) {

return(ab[1] + ab[2]*x1^2*x2)

}

CGSplot(d$Girth, d$Height, d$Volume, pch=19, cex=1.6,

xlab="Girth (inches)", ylab="Height (ft)",

zlab=expression(Volume~(ft^3)),

main="Volume of Timber in Black Cherry Trees")

fcontour(d$Girth, d$Height, volume.surface, ab=fit2$coefficients)
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4.4 The following dataset is a sample of one thousand adult males.
For each subject, we have measured his height (in inches), along
with the heights of his father and mother.

x <- read.csv("http://quantitations.com/book/heights.csv")

head(x)

## height father.height mother.height

## 1 71.0 69.7 71.2

## 2 67.7 68.6 70.0

## 3 73.8 72.5 66.0

## 4 65.9 65.7 63.8

## 5 69.0 69.2 66.5

## 6 73.0 74.6 64.8

Make a histogram for the variable height . What shape does it
have? Find the mean and standard deviation of height to the
nearest inch.

Now draw a histogram (describe the shape) and find the mean
and standard deviation (again, both to the nearest inch) of the
fathers’ heights.

If Roger is one of the fathers from the data set, and his height
is 76 inches, about what proportion of the fathers are taller than
Roger? (Don’t look at the data to answer this - just use facts you
know about data with this shape.)

4.5 Consider fathers’ heights and sons’ heights from the data set
you just used. Which variable do you think makes more sense as
the response variable? Create a scatterplot of these two variables
(with the response variable on the vertical axis, of course), and
draw the least-squares line on the plot. Find the R2 of this fit,
and explain what it means.

4.6 Continuing with the height data, write down the equation of
the least-squares line from the above problem in slope-intercept
form. Also write the equation of the least-squares line in terms
of the “standardized" variables (i.e. the form that I derived in
the lecture to clarify the meaning of correlation).

Recall the father named Roger who is 76 inches tall. What does
the least-squares line predict for the height of his son?

4.7 The term “regression" is often used in statistics to mean fitting
a quatitative variable. This term originated from the phrase “re-
gression toward mediocrity" used by a statistician (in the late
1800s) after analyzing heights of fathers and sons. Thinking
about the least-squares line (in standardized form) and your an-
swer to the previous problem, explain what you think this statis-
tician meant by “regression toward mediocrity"? (Hint: Look up
the word “regress" if you’re not familiar with it.)
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4.8 Continuing with the height data, do a pairs plot for the three
variables in x . Next, we want to analyze all three together.
Which variable makes the most sense as the response? Create a
color gradient scatterplot of the these three variables. (It’s okay
if the legend doesn’t look quite right.) Write the equation of the
least-squares plane, and add the level curves for this plane to
your color gradient scatterplot. Finally, find the R2 for this fit
and compare it to the R2 of the least-squares line fit for fathers’
heights that you calculated above.

4.9 Consider the trees dataset again, this time only looking at the
variables Volume (response) and Girth (explanatory). Draw a
scatterplot with the least-squares line. Calculate R2, and draw a
residual plot for that fit. Comment on the residuals. If appropri-
ate (i.e. if the residuals show a pattern), find a least-squares fit
for another type of curve. Redraw the scatterplot with this new
fit curve. (You can sketch the curve by hand if you can’t figure
out how to make it using R.) Find the R2 and make a residual
plot for your second fit. Which fit do you like better? What are
the tradeoffs?

4.10 Perform a very brief descriptive analysis of R’s built-in dataset
attitude. This is an open-ended problem: I’m not posing any
specific question that you’re trying to answer from the data.
Just see what you can come up with. (Don’t worry if it seems
hard! This is not a report, just a very low-stakes exercise! Make
a handful of plots, calculate some statistics, and comment on
anything that seems interesting.)

4.4 Conclusion

With one quantitative variable, we saw a number of statistics and plots for
summarizing the location and spread of the data points. Once we had two
or more quantitative variable, we became interested in summarizing the
relationships among them. We repeatedly found ourselves looking for a
function of the explanatory variables that would fit the response variable
well, a task known as regression. In each case, we settled on a class of
functions that was linear in its parameters, then used the lm command to
find the parameter values of the “best-fitting" function in the class (the
function with the smallest sum of squared residuals). In the two-variable
case, the set of straight lines is the most commonly used class of functions,
and the best-fitting one is called the least-squares line. In the three-variable
case, the set of planes is the most commonly used class, and we called the
best-fitting one the least-squares plane.

The table below summarizes these statistics and plots and their rela-
tionships; a dotted line from a statistic to a plot signifies that the plot
intuitively displays that statistic. This table fills in some of the details of
our big picture (Figure 1.3).
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5 Description of Categorical Data

We now turn to categorical variables. Recall that categorical variables
give a category assignment to each observation in the dataset. As we
continue our survey of the descriptive stage of data analysis, recall how
this chapter fits into the big picture.

First, we will see how to analyze one categorical variable on its own.
Then, we will see how to analyze two categorical variables together. In
each case, you will learn what statistics can be calculated to summarize
the data as well as some of the plots can be made to display it.

5.1 One Categorical Variable

In Chapter 1, we looked at a dataset of computer files (Example 1.2.1).

x <- read.csv("http://quantitations.com/book/formats-sizes.csv")

head(x)

## format size

## 1 jpg 0.78

## 2 doc 0.15
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## 3 doc 0.19

## 4 jpg 0.01

## 5 mp3 9.23

## 6 mp3 4.54

The data frame is made up of one categorical variable ( format ) and one
quantitative variable ( size ). The format variable will be our example as
we consider what statistics and plots can be used for a single categorical
variable.

5.1.1 Statistics

The most obvious statistics to summarize a categorical variable are the
counts of the number of observations within each category, which can be
calculated using the table command.

tab <- table(x$format)

tab

##

## doc jpg mp3

## 3656 5199 1145

We will call this set of counts a one-way frequency table. If you are also in-
terested in the proportion of observations belonging to each category, then
you can divide each of these counts by the total number of observations
to get the one-way relative frequency table.

tab/sum(tab)

##

## doc jpg mp3

## 0.3656 0.5199 0.1145

If you were to draw one file at random from the set of files who are
recorded in the frequency table, the relative frequency table gives the prob-
abilities that the file is of each type. For this reason, this table is also called
the empirical distribution on the categories.11 Note that in the context of infer-

ence, we often talk about the under-
lying distribution that the data was

drawn from. Don’t confuse these
concepts. In fact, at the description
stage, we don’t even need to think

about the data being drawn from
some underlying distribution; the

data that we have is all we care about.

5.1 A relative frequency table contains less information than a fre-
quency table. What is one number that you could provide along
with a relative frequency table in order to give the same infor-
mation as a frequency table?

5.1.2 Plots

The bar chart is a simple and intuitive plot for displaying the count of each
category, which is the same information as a one-way frequency table.2 In2 In fact, it’s useful for display-

ing any data that can be ar-
ranged into a one-way table,

as you will see in Section 6.1.2.

fact, the R command barplot wants the data to already be in table form.
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barplot(tab, col=2:4,

main="Number of Files of Each Format")
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The height of the bar above each category tells you the count.
A pie chart, on the other hand, conveys the relative proportions of the

different categories, the same information that a two-way relative fre-
quency table tells. The command pie also takes one-way tables as input.

doc

jpg

mp3

Proportion of Files of Each Format

Figure 5.1: The pie chart shows the
relative proportion of files that belong
to each filetype.

pie(tab, col=2:4,

main="Proportion of Files of Each Format")

The proportion of the circle’s area that has a category’s color is equal to
the proportion of observations belonging to that category.

One-way frequency tables tell you the counts, while bar charts display
them visually. One-way relative frequency tables tell you the proportions,
while pie charts display them visually. These statistics and plots are espe-
cially straight-forward, so we won’t discuss them further. With only one
categorical variable, there’s really not much to do. Things will get more
interesting when we add more variables.

5.2 Two Categorical Variables

What if we have more than one categorical variable? We could simply
make a table and barchart, as described above, for each of our variables,
one at a time. This would help us understand the individual variables.
However, when you plot more than one variable at a time, it can enable
you to understand how the variables are related to each other, which is
often much more interesting.

The computer files dataset only had one categorical variables, so we
need to move on to another example dataset. This time, we will use
survey , which comes with the built-in R package MASS.

library(MASS)

#help(survey)

head(survey)

## Sex Wr.Hnd NW.Hnd W.Hnd Fold Pulse Clap Exer Smoke Height

## 1 Female 18.5 18.0 Right R on L 92 Left Some Never 173.00
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## 2 Male 19.5 20.5 Left R on L 104 Left None Regul 177.80

## 3 Male 18.0 13.3 Right L on R 87 Neither None Occas NA

## 4 Male 18.8 18.9 Right R on L NA Neither None Never 160.00

## 5 Male 20.0 20.0 Right Neither 35 Right Some Never 165.00

## 6 Female 18.0 17.7 Right L on R 64 Right Some Never 172.72

## M.I Age

## 1 Metric 18.250

## 2 Imperial 17.583

## 3 <NA> 16.917

## 4 Metric 20.333

## 5 Metric 23.667

## 6 Imperial 21.000

We will look at the two variables Exer and Smoke which contain the
students’ responses to how often they exercise and how often they smoke.

5.2.1 Statistics

Again, the most obvious statistic to calculate with two categorical variables
is a count. This time we will count the number of observations that belong to
each possible combination of categories.33 Or rather, R will count them.

table(survey$Exer, survey$Smoke)

##

## Heavy Never Occas Regul

## Freq 7 87 12 9

## None 1 18 3 1

## Some 3 84 4 7

Let’s copy these variables into a new R object in case we want to modify
them. Then if we make any mistakes or change our minds about anything,
we can easily start over with the original data still safe and sound in the
survey object.

y <- survey[, c("Exer", "Smoke")]

head(y)

## Exer Smoke

## 1 Some Never

## 2 None Regul

## 3 None Occas

## 4 None Never

## 5 Some Never

## 6 Some Never

table(y)

## Smoke

## Exer Heavy Never Occas Regul

## Freq 7 87 12 9
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## None 1 18 3 1

## Some 3 84 4 7

The variable Smoke has four categories, some of which contain only a
few observations. For simplicity, it might make sense to recategorize the
values as simply “Never smokes" if they responded that they never smoke
and “Smokes" otherwise.

levels(y$Smoke) <- c("Smokes", "Never smokes", "Smokes", "Smokes")

table(y)

## Smoke

## Exer Smokes Never smokes

## Freq 28 87

## None 5 18

## Some 14 84

Notice that the categories of Exer have a natural ordering,4, but the table 4 None < Some < Freq

is listing them in a different order. The factor command allows us to
change the order of the categories.

# Change the order of Exer from (Freq, None, Some)

# to (None, Some, Freq)

y$Exer <- factor(y$Exer, levels(y$Exer)[c(2, 3, 1)])

# And reverse the order of Smoke

y$Smoke <- factor(y$Smoke, levels(y$Smoke)[2:1])

tab <- table(y)

tab

## Smoke

## Exer Never smokes Smokes

## None 18 5

## Some 84 14

## Freq 87 28

We will call this set of statistics a two-way frequency table. If we divide
by the total number of observations counted, we get a two-way relative
frequency table.

# Divide the table by the sum of the counts

# and round the output to two decimal places.

joint <- round(tab/sum(tab), 2)

joint

## Smoke

## Exer Never smokes Smokes

## None 0.08 0.02

## Some 0.36 0.06

## Freq 0.37 0.12

We could also call this table the empirical joint distribution of the two vari-
ables.
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In this context, the individual variables’ counts and empirical distribu-
tions are known as marginal frequencies and the empirical marginal distri-
bution to distinguish them from the joint frequencies and empirical joint
distribution. To find the marginal frequency of Smoke , you can use the
table command as in 5.1.1 or you can take the sums along the columns of
the two-way frequency table.55 Actually, if you try this with Exer

instead, you will find that the
marginals do not match! This is be-

cause the variable Smoke is miss-
ing a value; that is, one respondent

did not tell the surveyors whether or
not he smoked. R ignored that row
when computing the two-way table

for Exer and Smoke together, but it
included that observation when com-

puting the one-way table for Exer .

# Make a one-way table for Smoke

table(y$Smoke)

##

## Never smokes Smokes

## 189 47

# Find the sums of the two-way table's columns

marginalFreq <- apply(tab, 2, sum)

marginalFreq

## Never smokes Smokes

## 189 47

Recall that empirical marginal distributions can be found by dividing the
marginal frequencies by the total count. They can also be found by simply
summing the joint distribution along the direction of interest.

# Divide the marginal frequencies by the total count

round(marginalFreq/sum(tab), 2)

## Never smokes Smokes

## 0.8 0.2

# Sum the joint distribution values along the columns

apply(joint, 2, sum)

## Never smokes Smokes

## 0.81 0.20

In the first case, we took the sums then divided each one by the total count.
In the second case, we divided each number by the total count, then took
sums. These are mathematically equivalent.66 But you may get slightly differ-

ent numbers due to rounding. Finally, empirical conditional distributions are wonderful for elucidat-
ing the relationships between variables. The conditional distribution tells
you the probabilities distribution that one variable must have, given that
you know the value of another variable.7 For instance, imagine I were to7 This is discussed in Chapter 3.

select a student at random and ask him whether or not he smokes. If I find
that he smokes, then what is the probability that he exercises frequently?
Well, because I know that he smokes, I know that he is represented in
the right-hand column of the two-way table, the smokers. Because he was
randomly sampled, he is equally likely to be any of the smokers. There-
fore, the probability that he is exercises frequently is just the number of
smokers who exercise frequently divided by the total number of smokers,
which is 28/(5 + 14 + 28) ≈ 0.60. That isn’t the same as the overall prob-
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ability of exercising frequently if we hadn’t learned that the person was
a smoker, which is approximately8 0.37 + 0.12 = 0.49. In R, the condi- 8 This is the sum across the bottom row

of the joint distribution.tional distribution of Exer given that Smoke takes the value Smokes can
be found by dividing each entry of the Smoke column by that column’s
sum.9 The prop.table command takes a two-way table and provides 9 This can be done using either the

two-way frequency table or the two-
way relative frequency table.

conditional distributions; the second argument determines which variable
to condition on.

# The conditional distributions of Smoke given Exer

prop.table(tab, 1)

## Smoke

## Exer Never smokes Smokes

## None 0.78261 0.21739

## Some 0.85714 0.14286

## Freq 0.75652 0.24348

# The conditional distributions of Exer given Smoke

prop.table(tab, 2)

## Smoke

## Exer Never smokes Smokes

## None 0.095238 0.106383

## Some 0.444444 0.297872

## Freq 0.460317 0.595745

5.2.2 Plots

One way to visually display the information in a two-way frequency table
is a plot we will call multiple bar charts; it’s exactly what it sounds like.
You’ve already seen bar charts, so this simple extension will be easy for
you to interpret.

barplot(tab, beside=TRUE, legend=rownames(tab), col=2:4,

main="Students' Smoking and Exercise Habits")

Notice that you could have made a bar chart for each of the different
categories of Exer and used colors for the Smoke variable instead. This
can be achieved by using the transpose of the original table tab .10 10 In mathematics, transposing a matrix

means switching the rows with the
columns.

barplot(t(tab), beside=TRUE, legend.text=TRUE, col=2:3,

main="Students' Smoking and Exercise Habits",

args.legend=list(x="topleft"))

In practice, which variable should you put where? If you’re thinking about
one of the variables “explaining" the other variable, then each of the cate-
gories of the explaining variable should get its own bar charts, while the
explained variable is color-coded.11 For instance, if we think that per- 11 If you don’t have any explanation

in mind, then you may want to make
both plots for yourself and choose the
one that looks best or makes the most
sense.

haps the health effects of smoking could make it hard to exercise, then we
would prefer Figure 5.3
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Figure 5.2: An example of multiple bar
charts.
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Figure 5.3: Another plot of multiple
bar charts, this time reversing the roles
of the variables.
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A second type of plot for two-way frequency tables is stacked bar charts.
It uses the same barplot command but without setting the beside pa-
rameter to TRUE . This time it’s harder to see the specific counts within
every combination of categories, but you can now see the total counts eas-
ily (the marginal frequencies) for the variable labeled on the horizontal
axis.

barplot(tab, legend.text=TRUE, col=2:4,

main="Students' Smoking and Exercise Habits")
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Again, you get to choose which variable plays which role, and the same
rule applies: each category of the explaining variable should get its own
stacked bar.

If you are more interested in displaying and comparing the two-way
relative frequencies, an excellent choice is the mosaicplot. It is analogous to
the pie chart in that the amount of area corresponding to each combination
of categories is proportional to the count.

mosaicplot(tab, main="Students' Smoking and Exercise Habits",

color=3:4, cex=.9)

The plot shows you the empirical joint distribution but treats the two vari-
ables differently. It lets you see at a glance the empirical marginal distri-
bution of the variable whose categories are listed along the top: the prob-
ability of each category is proportional to the width of its column. And
looking within a column, you can easily see the empirical conditional dis-
tributions that result from conditioning on those categories. For instance,
in Figure 5.4, the Freq column has more blue than the Some column.
This means that a randomly selected student who exercises frequently is
less likely to smoke than a randomly selected student who exercises some.

Obviously, the roles can be switched.

mosaicplot(t(tab), main="Students' Smoking and Exercise Habits",

color=2:4, cex=.9)
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Figure 5.4: In a mosiacplot, the area
of each rectangle represents the pro-
portion of observations that belong to
each combination of categories. We
can see that most of the subjects in the
survey are non-smokers who exercise
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As before, you want to be able to easily see the conditional distributions
that are formed by conditioning on the explaining variable.

If all you care about are the conditional distributions, then the mosaic-
plot’s varying sizes of the columns may be distracting. In that case, a good
technique is to draw a rescaled stacked bar chart, which is like the stacked
bar chart except that the bars have been rescaled to have the same total
height.1212 There reason this code looks a

little complicated is that the leg-
end is placed beside the plot. With-

out the extra instructions, the leg-
end would obscure the boxplots.

ptab <- prop.table(tab, 2)

par(mar=c(5, 5, 4, 10))

barplot(ptab, legend.text=TRUE, col=2:4,

args.legend=list(x=3.2, y=1, bty="n", x.intersp=.1),

main="Distributions of Exercise Given Smoking")

par(mar=c(5.1, 4.1, 4.1, 2.1))
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5.2 Consider the following code and output:

m <- matrix(1:6, nrow=2)

m

## [,1] [,2] [,3]

## [1,] 1 3 5

## [2,] 2 4 6

apply(m, 1, sum)

## [1] 9 12

apply(m, 2, sum)

## [1] 3 7 11

apply(m, 1, mean)

## [1] 3 4

apply(m, 2, mean)

## [1] 1.5 3.5 5.5

What does the apply function do? (Try out additional com-
mands or read the help(apply) page if you can’t figure it out
from the above examples.)
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5.3 The dataset caith comprises two categorical variables: eye
color and hair color. It is in the built-in R package MASS in
frequency table form.

library(MASS)

#help(caith)

caith

## fair red medium dark black

## blue 326 38 241 110 3

## light 688 116 584 188 4

## medium 343 84 909 412 26

## dark 98 48 403 681 85

Use the apply command to find the marginal frequencies.
Then find the marginal relative frequencies. Make a barchart
for hair colors, and a pie chart for eye colors.

Make a rescaled stacked bar chart to compare the four con-
ditional distributions of hair color when conditioning on eye
color. (You’ll need to use as.matrix(caith) as the argument
to prop.table .) Comment on the differences.

5.3 Conclusion

In this chapter, we have learned some of the statistics and plots that can be
useful when dealing with categorical variables. In fact, for each statistic
we discussed, we also pointed out at least one plot that displays the same
information visually.

Again, we can compile what we’ve learned into a table as we work our
way toward an understanding of the big picture (Figure 1.3).



6 Description of Both Types Together

Finally, we will look at a few ways to synthesize quantitative and cate-
gorical information to describe our data. The tools available to us (statis-
tics and plots) depend on how many of each type of variable we are trying
to analyze together. This chapter will go through three different mixes of
variables: one quantitative with one categorical, one quantitative with two
categorical, and two quantitative with one categorical.

6.1 One Quantitative Variable and Categorical Variable

We now return to the dataset of computer files (Example 1.2.1) that we
first saw in Chapter 1.

x <- read.csv("http://quantitations.com/book/formats-sizes.csv")

head(x)

## format size

## 1 jpg 0.78

## 2 doc 0.15

## 3 doc 0.19
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## 4 jpg 0.01

## 5 mp3 9.23

## 6 mp3 4.54

The data frame is made up of one categorical variable ( format ) and one
quantitative variable ( size ), so we will use it to demonstrate some possi-
ble statistics and plots for this combination of variable types.

6.1.1 Statistics

Any statistic that you can calculate on a single quantitative variable, you
can calculate as aggregate statistics by finding the quantity for each category
separately. The statistic for each category can be organized into a one-
way table, which generalizes the idea of a one-way frequency table. Now
instead of the entries of the table being counts, they can be any function
of a quantitative variable.

The point of calculating aggregate statistics is typically to compare dif-
ferent groups, and the mean is the most commonly used statistic here.

means <- aggregate(x$size, list(format=x$format), mean)

names(means)[2] <- "mean"

means

## format mean

## 1 doc 0.20287

## 2 jpg 0.24916

## 3 mp3 8.35777

The average size of a jpg is a little bigger than the average size of a doc,
while the average mp3 is many times larger than both of them.

As another example, you could find the size of the largest file of each
format.

maxes <- aggregate(x$size, list(format=x$format), max)

names(maxes)[2] <- "max"

maxes

## format max

## 1 doc 1.99

## 2 jpg 2.23

## 3 mp3 54.02

Or you might want to calculate a an aggregate statistic that doesn’t have
a built-in function in R. In that case, you can write your own function; to
demonstrate, let’s find the sum of the squared file sizes for each format.

sumsquare <- function(v) {

return(sum(v^2))

}
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sumsquares <- aggregate(x$size, list(format=x$format), sumsquare)

names(sumsquares)[2] <- "sum of squares"

sumsquares

## format sum of squares

## 1 doc 306.98

## 2 jpg 649.75

## 3 mp3 152687.10

In our discussion so far, we have implicitly thought of the categori-
cal variable as explanatory and the quantitative variable as the response.
There are classification techniques that reverse those roles, such as logistic
regression, but they are beyond the scope of this book.

6.1.2 Plots

First, let’s talk about how to display the results in a one-way table. An
obvious choice is the bar chart that we saw when we wanted to display
one-way frequency tables. There’s really nothing about the bar chart that
is specific to frequencies, so we can use it to display any aggregate statistics
we want.
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Figure 6.1: The bar chart shows the
average file size for each filetype. We
see that, on average, an mp3 is many
times larger than any other filetype.

barplot(means$mean, names.arg=means$format, col=2:4,

ylab="File Size (MB)", main="Average File Sizes")

Now we know how to compare a single statistic from each category.
What if you want to compare the overall shape of the data from the different
categories? We’ll look at two types of plots that are useful. First, side-by-
side boxplots are, as you might guess from the name, separate boxplots of
the data within each category placed alongside each other.

boxplot(size ~ format, data=x, col=2:4)
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In this figure, the range of the mp3 files’ sizes is so much larger than the
others that it’s impossible to see any of the detail of the other two boxplots.
Let’s try to transform the data to get them on more equal footing. Below
the side-by-side boxplots are drawn again, after adding .1 to each file size
then taking the natural logarithm of it.1 1 Taking logarithms of very small

values makes them shoot off toward
negative infinity, so often we add
a small number to each data point
first to avoid that problem. You may
wonder whether that’s “allowed."
It’s a monotonic transformation, just
like the logarithm transformation
is. Any monotonic transformation is
legitimate.
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boxplot(log(size+.1) ~ format, data=x, col=2:4,

ylab="Log (File Size + .1)",

main="File Sizes")
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Notice that this shows us much more information about the file sizes than
the bar chart of means (Figure 6.1) showed us. We can see right away that,
for instance, even the largest doc or mpg is still smaller than three quarters
of the mp3 files.22 If you don’t see why that’s

clear, review the definition
of boxplots in Section 4.1.1.

Another way to visualize the whole shape of the data among the var-
ious groups is to create a colored density plot which superimposes each
category’s density plot on the same graph in different colors. My code for
making Figure 6.2 is stored on my server, but you can source it into your
R environment.

source("http://quantitations.com/book/CDplot.R")

CDplot(log(x$size+.1), x$format, xlab="File Size (Log-transformed)",

main="Density Plots of File Sizes by Format")

Figure 6.2: Colored Density Plots show
that the DOC and JPG files have very

a very distribution of sizes, while
the MP3 files tend to be much larger.

−2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Density Plots of File Sizes by Format

File Size (Log−transformed)

D
en

si
ty

doc
jpg
mp3



description of both types together 103

The colored density plot conveys similar information to the side-by-side
boxplot.

6.1 Instead of a natural logarithm transformation, draw side-by-
side boxplots for square-root-transformed file sizes. (Hint: the
function sqrt will be useful.)

Also, find the sum of the square roots of the file sizes for each
format, and make a bar chart displaying these three statistics.

6.2 The data frame at http://quantitations.com/book/formats-sizes2.csv

comprises R and R Markdown files and their sizes. Repeat the
analysis from Chapter 1 of this book to see which file format is
taking up more of my computer’s space. Then make additional
plots to see if there’s a better explanation of what’s happening.
(There is.)

6.2 One Quantitative Variable and Two Categorical Variables

Recall the exercise and smoking survey data that we explored in Chapter 5.
We’ll take another look at that data set, this time including the quantitative
variable pulse .

library(MASS)

y <- survey[, c("Exer", "Smoke", "Pulse")]

head(y)

## Exer Smoke Pulse

## 1 Some Never 92

## 2 None Regul 104

## 3 None Occas 87

## 4 None Never NA

## 5 Some Never 35

## 6 Some Never 64

# Simplify the categories, as before

levels(y$Smoke) <- c("Smokes", "Never smokes", "Smokes", "Smokes")

y$Exer <- factor(y$Exer, levels(y$Exer)[c(2, 3, 1)])

y$Smoke <- factor(y$Smoke, levels(y$Smoke)[2:1])

Notice the NA in the pulse variable. That is an example of missing data,
and it’s to be expected in real world data analysis. A common method for
handling missing data is to just ignore the observations that have NA s,
which can be done as follows.

# How many observations did we start with?

dim(y)

## [1] 237 3
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# Remove any observations with missing values

y <- y[complete.cases(y), ]

# How many observations do we have left?

dim(y)

## [1] 191 3

6.2.1 Statistics

This case is very similar to the one we just saw. Now that we have two
categorical variables, however, we might want to calculate an aggregate
statistic over every combination of categories. The results can be organized
into a two-way table.

mean.pulse <- tapply(y$Pulse, list(y$Exer, y$Smoke), mean)

mean.pulse

## Never smokes Smokes

## None 74.167 83.750

## Some 76.864 73.000

## Freq 71.405 73.952

The two-way table is a generalization of the two-way frequency table in
the same way that the one-way table is a generalization of the one-way
frequency table. Again, we’re implicity treating the quantitative variable
as the response variable; we will not cover the classification techniques that
treat the categorical variable as the response.

6.2.2 Plots

Just as the multiple bar chart was good for displaying the two-way fre-
quency table, it’s also effective at displaying the information from a two-
way table in general.

barplot(mean.pulse, beside=TRUE, legend=rownames(mean.pulse), col=2:4,

main="Students' Pulses with Smoking and Exercise Habits",

ylab="Pulse Rate (beats per minute)", ylim=c(0, 120),

args.legend=list(title="Exercises"))
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We see that among non-smokers the differences in average pulse based
on exercise frequency weren’t very large. However, among the smokers,
those who never exercise had an average pulse about ten beats per minute
higher than those who did exercise. This is another case where the roles of
the two categorical variables can be reversed if it leads to a more intuitive
interpretation. In practice, you might want to try it both ways; recall from
Section 5.2 that the t command returns the transpose of a table.

To see more detail about the shape of the quantitative variable’s data
within each combination of categories, we can draw multiple side-by-side
boxplots.

par(mar=c(5.1, 4.1, 6, 2.1))

boxplot(Pulse ~ Exer + Smoke, data=y, col=2:4,

names=rep(levels(y$Exer), length(levels(y$Smoke))),

main="Students' Pulses with Smoking and Exercise Habits",

ylab="Pulse Rate (beats per minute)")

abline(v=3.5)

par(xpd=TRUE)

text(x=2, y=110, labels=levels(y$Smoke)[1])

text(x=5, y=110, labels=levels(y$Smoke)[2])

par(mar=c(5.1, 4.1, 4.1, 2.1), xpd=FALSE)
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6.3 Two Quantitative Variables and One Categorical Variable

At last, we’ve reached the last mix of variable types we will discuss: two
quantitative variables and one categorical. Again, we won’t go into the
classification techniques that treat the categorical variable as the response.
Instead we will follow the same pattern that we’ve followed throughout
this chapter by splitting up the data according to the value of the categor-
ical variable, and looking at the quantitative variables within each group.

We will use a dataset of 74 models of automobiles sold in the United
States in 1979. Our categorical variable will be the model’s origin (Amer-
ica, Europe, or Japan); the two quantitative variables will be the model’s
weight and gas mileage.

# Before moving on, run the following commands to install the required packages:

# install.packages("mclust")

# install.packages("robustbase")

# install.packages("corrgram")

library(corrgram)

#help(auto)

head(auto)

## Model Origin Price MPG Rep78 Rep77 Hroom Rseat Trunk Weight

## 1 AMC Concord A 4099 22 3 2 2.5 27.5 11 2930

## 2 AMC Pacer A 4749 17 3 1 3.0 25.5 11 3350

## 3 AMC Spirit A 3799 22 NA NA 3.0 18.5 12 2640

## 4 Audi 5000 E 9690 17 5 2 3.0 27.0 15 2830

## 5 Audi Fox E 6295 23 3 3 2.5 28.0 11 2070

## 6 BMW 320I E 9735 25 4 4 2.5 26.0 12 2650

## Length Turn Displa Gratio

## 1 186 40 121 3.58

## 2 173 40 258 2.53

## 3 168 35 121 3.08

## 4 189 37 131 3.20
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## 5 174 36 97 3.70

## 6 177 34 121 3.64

y <- auto

levels(y$Origin)

## [1] "A" "E" "J"

levels(y$Origin) <- c("America", "Europe", "Japan")

6.3.1 Statistics

In summarizing the relationship among these variables, we might want
to use least-squares lines. We could ignore the categorical variable and just
calculate the overall least-squares line for the two quantitative variables.
Or we could calculate a different least-squares line for each category. One
line is simpler than three, but the three lines will fit the data better. Yet
again, we find ourselves facing the simplicity versus fit trade-off. We even
have options between these two extremes, like finding a line for each cat-
egory, while requiring that they all have the same slope. To decide which
option makes the most sense, we need to visualize the data, so let’s draw
it before we do any calculating.

6.3.2 Plots

An intuitive way to plot the data is the colored scatterplot in which we
create a scatterplot of the two quantitative variables using a different color
for each point depending on the categorical variable’s value.

plot(y$Weight, y$MPG, col=as.numeric(y$Origin)+1, xlab="Weight",

ylab="Gas Mileage (miles/gallon)",

main="Weights and Fuel Efficiencies of Cars from Different Origins")

k <- length(levels(y$Origin))

legend("topright", legend=levels(y$Origin),

text.col=2:(k+1), fill=2:(k+1))
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We can see that the two variables are negatively related. But a line doesn’t
really capture the relationship. In the grades dataset from Section 4.2.2,
we successfully found a slightly more complicated curve that captured the
pattern in the data. In this case, a transformation might make more sense.
The data follow a curve that has the same basic shape as y = 1/x (or
equivalently 1/y = x). Based on that observation, we might think that the
reciprocal of one of the variables may be linearly related with the other
variable. Let’s take the reciprocal of the response variable, thus changing
the measure of fuel efficiency (in miles per gallon) to a measure of fuel
inefficiency (in gallons per mile).

plot(y$Weight, 1/y$MPG, col=as.numeric(y$Origin)+1, xlab="Weight",

ylab="Gas Consumption (gallons/mile)",

main="Weights and Fuel Efficiencies of Cars from Different Origins")

legend("topleft", legend=levels(y$Origin),

text.col=2:(k+1), fill=2:(k+1))
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Now the relationships look much more linear. Let’s try all three of the
least-squares fits that we proposed in Section 6.3.1.

First, we draw a single least-squares line to summarize the overall rela-
tionship, ignoring the categorical variable’s information.

fit1 <- lm(I(1/MPG) ~ Weight, data=y)

plot(y$Weight, 1/y$MPG, col=as.numeric(y$Origin)+1, xlab="Weight",

ylab="Gas Consumption (gallons/mile)",

main="Weights and Fuel Efficiencies of Cars from Different Origins")

legend("topleft", legend=levels(y$Origin),

text.col=2:(k+1), fill=2:(k+1))

abline(fit1)
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Next, we will allow the different categories to have different intercepts.
This gives us three parallel least-squares lines.

fit2 <- lm(I(1/MPG) ~ Weight + Origin, data=y)

plot(y$Weight, 1/y$MPG, col=as.numeric(y$Origin)+1, xlab="Weight",

ylab="Gas Consumption (gallons/mile)",

main="Weights and Fuel Efficiencies of Cars from Different Origins")

legend("topleft", legend=levels(y$Origin),

text.col=2:(k+1), fill=2:(k+1))

abline(fit2$coef[1], fit2$coef[2], col=2)

abline(fit2$coef[1] + fit2$coef[3], fit2$coef[2], col=3)

abline(fit2$coef[1] + fit2$coef[4], fit2$coef[2], col=4)
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Finally, we also allow for interactions, which means that the categories’
least-squares lines are also allowed to have different slopes.

fit3 <- lm(I(1/MPG) ~ Weight*Origin, data=y)

plot(y$Weight, 1/y$MPG, col=as.numeric(y$Origin)+1, xlab="Weight",

ylab="Gas Consumption (gallons/mile)",

main="Weights and Fuel Efficiencies of Cars from Different Origins")

legend("topleft", legend=levels(y$Origin),

text.col=2:(k+1), fill=2:(k+1))

abline(fit3$coef[1], fit3$coef[2], col=2)

abline(fit3$coef[1] + fit3$coef[3], fit3$coef[2] + fit3$coef[5], col=3)

abline(fit3$coef[1] + fit3$coef[4], fit3$coef[2] + fit3$coef[6], col=4)
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We won’t spend any more time discussing which of these fits we should
prefer. For descriptive analysis, it’s a judgement call by the data analyst
that depends on the purpose of the analysis. We will return to this ques-
tion, however, in the context of inference (Chapter 9).

6.3 Recall the survey data (in the MASS package) we used earlier.
Make a scatterplot with span of writing hand and span of non-
writing hand. (Use non-writing hand as the response variable,
although the choice is a bit arbitrary.) Draw the least-squares
line on the plot. Make the plot again, this time coloring the
points according to the gender of the student (a colored scatter-
plot). Draw the original (overall) least-squares line again. Do
you think this line still summarizes the data well, or should the
two groups get different lines?

6.4 Conclusion

When analyzing both quantitative and categorical variables together, a
typical approach is to split the data up by category (or by combination
of categories) and analyze the quantitative variables separately for each
group. Each technique we saw in this chapter follows that pattern. We
summarize them in the table below to complete the Description column of
the big picture (Figure 1.3).
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This concludes our survey of the descriptive stage of data analysis. In
Part III, we will revisit each of the mixes of variable types we’ve looked at
already, this time asking some of the most common and useful inference
questions.





Part III

Inference





7 Inference on Quantitative Data

Some of the simplest and most common applications of statistical infer-
ence will be demonstrated in this chapter. In the context of one quantita-
tive variable, we will go through a careful explanation and demonstration
of each of the three tasks of inference applied to the population mean.
You’ll also see how Normal distributions and the Central Limit Theorem
play an essential role. We will also briefly summarize the concept of a
linear model for analyzing multiple quantitative variables together.

7.1 One Quantitative Variable

This section will focus on making inferences about the population mean of
one quantitative variable. Throughout, we will assume that our n observa-
tions are modeled by iid random variables with a finite mean µ and finite
variance σ2. You may want to review the properties of the sample mean
of iid random variables discussed in Chapter 3.

In this context, we’ll undertake all three inference tasks in turn: estima-
tion, hypothesis testing, and confidence intervals. As our example, we’ll
take the file sizes of the jpgs from the computer files dataset.
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x <- read.csv("http://quantitations.com/book/formats-sizes.csv")

head(x)

## format size

## 1 jpg 0.78

## 2 doc 0.15

## 3 doc 0.19

## 4 jpg 0.01

## 5 mp3 9.23

## 6 mp3 4.54

y <- x$size[x$format=="jpg"]

length(y)

## [1] 5199

These files constitute the full population of interest. We will take a ran-
dom sample (with replacement) of 35 of the files, and then try to make
inferences about the population based only on our sample.

n <- 35

set.seed(1)

z <- sample(y, size=n, replace=T)

7.1.1 Estimation

As show in Chapter 3, the sample mean X̄ is an unbiased estimator of the
population mean µ, regardless of the distribution of the individual ran-
dom variables being averaged. Also shown in that chapter, the variance
of the sample mean is σ2/n. This implies that the sample mean’s distri-
bution increasingy concentrates around its expectation of µ as the sample
size increases.

In our example dataset z , the sample mean is 0.21 MB, so that is our
estimate of the population mean.

m <- mean(z)

m

## [1] 0.214

7.1.2 Hypothesis Testing

Recall that the hypothesis testing process entails a number of steps:

1. Formulate a null hypothesis that you will try to “disprove."

2. Identify a statistic whose distribution would be known (or approxi-
mately known) if the null hypothesis were assumed to be true.

3. Calculate the value of this test statistic from your data set.
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4. Find the probability that the test statistic would be at least as extreme
as its calculated value, assuming the null hypothesis were true; this is
called the significance probability.

5. Compare this significance probability to a pre-determined threshold
(e.g. .05 for a 95% hypothesis test). If the significance probability is
less than the threshold, then you reject the null hypothesis. Otherwise
you fail to reject it.

The null hypothesis that we will test is that the population mean µ is
equal to some specific value µ0. Now if we assume that the population
mean is µ0, can we identify a statistic whose distribution we know? Con-
sider the sample mean X̄. It has expected value equal to the population
mean, which we’re assuming is µ0. But the expected value is just one detail
about a distribution. Is it possible for us to know the whole distribution?

It is an important fact that an average of Normal random variables also
has a Normal distribution. So if the individual observations can be mod-
eled by Normal random variables, then so can the sample mean. As noted
above, many real-world mechanisms actually produce approximately Nor-
mal data, resulting in histograms that are roughly bell-shaped. If your
data appear to be bell-shaped you may want to assume that the individual
observations are well-modeled by a Normal distribution; then the sam-
ple mean is also well-modeled by a Normal distribution, in particular
N(µ0, σ2/n). If you know σ2, then you’ve fully specified a distribution
for X̄. Furthermore, the transformation

z :=
(X̄− µ0)

σ/
√

n

would have a standard Normal distribution. Let’s call this quantity the
z-statistic.

Once you’ve calculated z from your data, you need to find the proba-
bility that a standard Normal distribution would take a value at least as
extreme (in this case, at least as far from zero) as z. Letting F represent
the standard Normal cdf and using the fact that the standard Normal dis-
tribution is symmetric about zero, this significance probability is simply
p := 2F(−|z|). Comparing this p-value to a threshold is called a z-test.

However, there is a glaring weakness in the technique we just saw: it
assumed that we know σ2. In practice, that’s almost never the case! In-
stead, we have to estimate the standard deviation from the data; recall the
definition of the estimated standard deviation σ̂ from Section 4.1.1. Once
we’ve estimated the standard deviation of the individual observations, a
natural estimate of the sample mean’s standard deviation is

SE :=
σ̂√
n

,

a quantity known as the standard error. Then instead of the z-statistic,
which is unknowable, we calculate the t-statistic that replaces the standard
deviation of X̄ by our estimate of it.

t :=
(X̄− µ0)

SE
(7.1)
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This statistic does not have a standard Normal distribution. It has a t
distribution with n− 1 degrees of freedom (which we will denote by tn−1).
t distributions have a similar shape to the standard Normal distribution,
except that they have heavier tails. As n gets larger, the tn−1 distribution
becomes closer and closer to the standard Normal distribution.

grid <- seq(-3, 3, length.out=100)

plot(sapply(grid, dt, df=5), type="l", col=4, ylab="density", xlab="x",

main="Standard Normal and Selected t Densities", ylim=c(0, .4))

lines(sapply(grid, dt, df=10), col=3)

lines(sapply(grid, dt, df=20), col=2)

lines(sapply(grid, dnorm))

ltext <- c(expression(t[5]), expression(t[10]), expression(t[20]), "N(0,1)")

legend("topright", legend=ltext, text.col=4:1, fill=4:1)
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t distributions are also symmetric around zero, so again the significance
probability is

p := 2F(−|t|), (7.2)

where in this case the F refers to the appropriate t distribution’s cdf. Com-
paring this p-value to a threshold is called a t-test.

The above argument was predicated on the histogram of the variable
being roughly bell-shaped. What if it’s not? Then can we still figure
out the distribution of X̄? Well, according to the CLT, a sample mean
of random variables that aren’t Normal also tends to be approximately
Normal if the sample size is large enough (many data analysts use 30 as
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a rule of thumb). So you can use a t-test as long as n is large enough, no
matter what the histogram of the data looks like.1 1 There are other techniques available if

the sample size is smaller, but they are
beyond the scope of this book.

Let me reiterate this section’s main message. Assume you have a quan-
titative variable in your dataset, and you want to test the proposition that
its population mean is µ0. If the sample size is at least 30, you can use a
t-test. If the sample size is smaller than that, but the histogram is roughly
bell-shaped, then you can still use a t-test.

Next, we’ll work out a simple example in R with our file sizes. Let’s
test the null hypothesis that the population mean of jpg file sizes is .5.
A histogram of the data confirms that they aren’t bell-shaped, but that’s
okay because we can rely on the CLT and the sample-size-30 rule. Our
present sample size is 35, so we will assume that the distribution of X̄ is
approximately Normal even though the data aren’t.

hist(z)
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Next, we need to calculate the t-statistic, as defined in equation (7.1).

SE <- sd(z)/sqrt(n)

t <- (m - .5)/SE

t

## [1] -7.5205

If X̄ were Normal with expectation .5 and variance σ2/35, then the t-
statistic would have a t34 distribution. The significance probability is the
probability that a t34-distributed random variable is at least as extreme as
the value we’ve observed. According to the formula (7.2),

p <- 2*pt(-abs(t), df=n-1)

p

## [1] 9.9012e-09

The probability is only about 9.90118× 10−9 that the sample mean would
be at least this far from .5 if the true population mean were .5. This is very
strong evidence against the null hypothesis. We would easily reject the
null hypothesis in a .05-level test (i.e. a 95% hypothesis test).
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7.1.3 Confidence Intervals

Recall that a standard Normal random variable has probability .95 within
two standard deviations of its mean. Letting Y ∼ N(µ, σ2), we can express
that fact mathematically as follows.

P(µ− 2σ ≤ Y ≤ µ + 2σ) ≈ .95

Rearranging, we get an equivalent statement about standard Normal ran-
dom variables.

P(−2 ≤ Y− µ

σ
≤ 2) ≈ .95

That is, if you add up the area under the standard Normal density in the
region between −2 and 2, you get about .95.

pnorm(2) - pnorm(-2)

## [1] 0.9545

What if you didn’t know how far out you needed to go from the mean
to cover a desired amount of probability? Then you can use the quantile
function, specifying how much probability you want to cover. Specifically,
for a random variable X, the quantile function q(p) is defined to be the
smallest a value such that P(X ≤ a) is at least p. For example, if you
want to find out how far you need to go before you’ve accumulated .975
probability under the standard Normal density curve, that is q(.975) for
the standard Normal quantile function q.

qnorm(.975)

## [1] 1.96

This is about 2.0. That means that the interval from −∞ to 2 has proba-
bility about .975. In other words, there is only about .025 probability of a
standard Normal draw being greater than 2. By symmetry, there is also
only about .025 probability of being less than −2. Thus there is a total
probability of .05 of being outside of [−2, 2], a fact that you already knew.

The t distributions are also symmetric, so you can also find the margin
required to cover 95% of the probability by finding the .975 quantile. In
R, you can find the .975 quantile of the t20 distribution, for instance, using
the command below.

qt(.975, df=20)

## [1] 2.086

If the degrees of freedom parameter is 28 or larger, then the .975 quantile
rounded to two significant digits is 2.0, just like the standard Normal .975
quantile.

Now we will apply this reasoning to sample means. Recall from our
discussion of hypothesis testing that if the sample size is at least 30, or
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if the sample size is smaller than that but the histogram is roughly bell-
shaped, then

(X̄− µ)

SE
(7.3)

is approximately tn−1 distributed. Note that this uses the true mean rather
than the hypothesized mean that we saw in the definition of the t-statistic.
This is not a statistic we can calculate because we don’t know µ. We will
nonetheless be able to use this observation to our advantage.

Let the symbol qd(.975) represent the .975 quantile of the td distribu-
tion. We observed that the expression 7.3 above is approximately tn−1

distributed, so

P(−qn−1(.975) ≤ (X̄− µ)

SE
≤ qn−1(.975)) ≈ .95

Rearranging, we can reach the equivalent statement

P(X̄− qn−1(.975) SE ≤ µ ≤ X̄ + qn−1(.975) SE) ≈ .95

Consider the interval from X̄ − qn−1(.975) SE to X̄ + qn−1(.975) SE. It has
about a 95 percent chance of containing the true population mean µ. This
interval is called a 95% confidence interval for the population mean. Ob-
serve that the interval is centered at X̄ the estimate for the mean, and ex-
tends in either direction a distance of qn−1(.975) SE, often called the margin
of error. Another way of writing the confidence interval demonstrates this
more clearly: X̄± qn−1(.975) SE.

Recall the definition of standard error as σ̂√
n . You can see that the larger

the sample size is the smaller the standard error tends to be. Additionally
qn−1(.975) decreases as n increases. So larger samples result in smaller
margins of error.2 However, the higher level of confidence you want, the 2 This should seem intuitive. More data

points means an improved ability to
identify where the true mean is.

larger the margin of error must be. For instance, a 99% confidence interval
would replace qn−1(.975) with qn−1(.995) and result in a larger confidence
interval than the 95% confidence interval created from the same data.3 3 This should also be intuitive. If you

want to be more sure that you’ll catch
the fish, then you should use a bigger
net.

It is interesting to note that the set of values in the confidence interval
is exactly the same as the set of µ0 that the t-test would fail to reject.

For our example fize size data, we first need to find the t34 distribution’s
.975 quantile, then extend our interval by that many standard errors to
either side of the sample mean.

q <- qt(.975, df=n-1)

q

## [1] 2.0322

CI <- c(m - q*SE, m + q*SE)

CI

## [1] 0.13671 0.29129

The interval from 0.13671 to 0.29129 is a 95% confidence interval for the
population mean. The true population mean is about .25, which is well
within the confidence interval’s bounds.
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mean(y)

## [1] 0.24916

For simplicity, you might want to just use X̄± 2 SE as long as the sample
size is at least 30. After all, in those cases, qn−1(.975) rounded to two
significant digits is 2.0. Just add this trick to your sample-size-30 rule.

7.2 Two Quantitative Variables

Next, we’ll consider ways to do inference on two quantitative variables to-
gether. Sometimes you’re primarily interested in the differences between
two variables; the two variables are called a paired sample. For example,
consider a data frame x that contains, for n subjects, the subject’s systolic
blood pressure measured at age thirty ( bp30 ) and the same subject’s sys-
tolic blood pressure measured at age forty ( bp40 ).4 If you’re interested4 The data described here could also be

written in a data frame with one cate-
gorical and one quantitative variable.

The categorical variable would pro-
vide the age (either 30 or 40) at which
the blood pressure was measured. But

a data frame of that sort would not
give us any indication which blood

pressure measurements belong to the
same people. Also, the observations

wouldn’t be independent. Arranging
the data into two quantitative vari-

ables as described here is much better.

in how blood pressures change over the decade from age twenty to thirty,
then you should create a new variable ( x$change <- x$bp40 - x$bp30 ).
Then questions about the difference between these two quantitative vari-
ables reduce to questions about the single quantitative variable change ;
at this point, you simply need to apply your knowledge of inference on
one quantitative variable from Section 7.2. Estimating the average change
in blood pressure is equivalent to estimating the population mean of the
change variable. Often, we want to ask if there is any change on aver-

age; this is equivalent to performing a hypothesis test in which the null
hypothesis is that the population mean of change is zero. Likewise a con-
fidence interval for the difference can be found by looking at the change

variable.

# Simulate blood pressure data

n <- 100

set.seed(1)

x <- data.frame(bp30=115+round(4*rnorm(n)),

bp40=120+round(5*rnorm(n)))

head(x)

## bp30 bp40

## 1 112 117

## 2 116 120

## 3 112 115

## 4 121 121

## 5 116 117

## 6 112 129

# Create a new variable for the change

x$change <- x$bp40 - x$bp30

head(x)

## bp30 bp40 change

## 1 112 117 5
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## 2 116 120 4

## 3 112 115 3

## 4 121 121 0

## 5 116 117 1

## 6 112 129 17

m <- mean(x$change)

m

## [1] 4.38

SE <- sd(x$change)/sqrt(n)

SE

## [1] 0.59861

# Consider the hypothesis that the average change is zero

t <- m/SE

t

## [1] 7.3169

p <- 2*pt(-abs(t), df=n-1)

p

## [1] 6.7552e-11

# 95% confidence interval for change in blood pressure

c(m - 2*SE, m + 2*SE)

## [1] 3.1828 5.5772

Often, however, you’re interested in the relationship between two quan-
titative variables, but not specifically in their difference. Recall from Chap-
ter 4 that we made scatterplots and calculated the least-squares line to
visualize and summarize the relationship between the variables. This pro-
cess is formalized in a branch of inference called linear models, in which
you assume that the response variable is a linear function of some set of
parameters5 plus some independent Normal(0, σ2) random errors for each 5 Notice that the term “linear" refers,

perhaps surprisingly, to the relation-
ship between the response variable
and the parameters rather than the
relationship between the response
variable and the explanatory variables.

of the observation.6 If we let Y1, . . . , Yn denote the response variable, and

6 In fact, many interesting results
in linear models do not need the
assumption that the errors are Normal.

X1, . . . , Xn denote the explanatory variable, then the simple linear model can
be expressed as follows.

Yi = β0 + β1Xi + εi (7.4)

Below, we will see how to estimate the parameters β0 and β1, also known
as the linear model coefficients, and how to test whether we should reject the
hypothesis that β1 is zero.

7.2.1 Estimation

We’ve already seen one way of estimating the slope of the linear rela-
tionship between two quantitative variables. In Chapter 4, we found the
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least-squares line and gave a formula for its slope and intercept. In fact,
it can be shown that the least-squares intercept and slope (here we’ll call
them β̂0 and β̂1) are unbiased estimators for β0 and β1. The difference is
that now we are assuming that there is some true line that is generating
the data according to (7.4). For instance, imagine that the true mechanism
generating the response variable is

Yi = 5 + 2Xi + εi

with σ2 = 1 as the variance of the εi. Let’s take a look at the true line then
at some data drawn from that mechanism.

# Simulating the data

set.seed(1)

n <- 15

x <- runif(n)

b0 <- 5; b1 <- 2

y <- b0 + b1*x + rnorm(n)

plot(x, y, type="n")

abline(b0, b1, col=2)
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plot(x, y, col=4)

abline(b0, b1, col=2, lty=2)
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In practice, we don’t know the true line, but we can estimate one from the
data. It won’t be equal to the true line, but hopefully it will be close.

plot(x, y, col=4)

abline(b0, b1, col=2, lty=2)

fit <- lm(y ~ x)

abline(fit, col=3)
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On average, the larger the sample, the more accurate our estimated line
will be.

One primary reason for estimating the linear model coefficients is to
predict future response variable values from expanatory variable values.
Suppose you’ll get a new observation of only the explanatory variable; let’s
call it Xn+1. If you knew the true coefficients, then β0 + β1Xn+1 would be
your best guess for what the corresponding response variable value Yn+1

will be. But in reality, you don’t know the linear model coefficients; you
only know the past data. But you can use your past data to estimate the
linear model coefficients! Then you can use those estimates to predict
what the new response variable value will be:

Ŷn+1 := β̂0 + β̂1Xn+1.
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head(attitude)

## rating complaints privileges learning raises critical advance

## 1 43 51 30 39 61 92 45

## 2 63 64 51 54 63 73 47

## 3 71 70 68 69 76 86 48

## 4 61 63 45 47 54 84 35

## 5 81 78 56 66 71 83 47

## 6 43 55 49 44 54 49 34

fit <- lm(rating ~ complaints, data=attitude)

fit

##

## Call:

## lm(formula = rating ~ complaints, data = attitude)

##

## Coefficients:

## (Intercept) complaints

## 14.376 0.755

To check that the errors are approximately Normal, you might want to
make a histogram of the residuals and look for a bell-shape.

hist(fit$residuals)
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With only 15 observations, it isn’t too surprising that the histogram isn’t
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convincingly bell-shaped. You can use simulation to get a sense for how
bell-shaped a histogram of 15 Normal draws should look by repeatedly
running hist(rnorm(15)) .

The linear model reasoning extends to more complicated relationshipts
between the response and explanatory variables. For instance, the linear
model expressing the response variable as a quadratic function of the ex-
planatory variable plus error is7 7 Remember, the “linear" part refers to

the relationship between the response
variables and the parameters (not the
explanatory variable), so the term
linear model is still appropriate here.

Yi = β0 + β1Xi + β2X2
i + εi.

7.2.2 Hypothesis Testing

If the assumptions of the linear model hold, then β̂1 is Normally dis-
tributed. As shown below, the summary function applied to a lm fit
calculates a standard error8 (i.e. an estimated standard deviation) for β̂1. 8 I won’t explain how this standard

error is defined. Just trust that R is
doing the right thing here.

summary(fit)

##

## Call:

## lm(formula = rating ~ complaints, data = attitude)

##

## Residuals:

## Min 1Q Median 3Q Max

## -12.880 -5.990 0.178 6.298 9.629

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 14.3763 6.6200 2.17 0.039 *
## complaints 0.7546 0.0975 7.74 2e-08 ***
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 6.99 on 28 degrees of freedom

## Multiple R-squared: 0.681,Adjusted R-squared: 0.67

## F-statistic: 59.9 on 1 and 28 DF, p-value: 1.99e-08

Consider the hypothesis that the true β1 is zero. If that were true,
then the estimate β̂1 divided by the standard error has a tn−k distribution,
where k is the number of linear model coefficients that you estimated for
your fit.

t :=
β̂1

SE

As usual, the significance probability is 2 times the appropriate t distri-
bution’s cdf evaluated at −|t|. This significance probability is part of the
summary output as well, as you can see in the R output above. If you

reject this null hypothesis, then you are affirming that explanatory vari-
able actually does have a term in the true linear model (7.4) between the
variables.
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7.3 Three Quantitative Variables

As you saw in the previous section, sometimes you’re more interested
in the difference between two quantitative variables than you are about
the variables themselves. Whenever you identify such a pair, then you
should create a new variable corresponding to the n differences. This
could turn an analysis of three quantitative variables into an analysis of
two quantitative variables, which we’ve already covered.

Often, however, you want to analyze three (or more) quantitative vari-
ables together. The principles from linear models can be directly extended
to this case for the equation. This time we have two explanatory variables
X1,1, . . . X1,n and X2,1, . . . X2,n, so the equation becomes

Yi = β0 + β1X1,i + β2X2,i + εi.

7.3.1 Estimation

Again, we want to estimate the linear model coefficients. And yet again,
the least-squares plane provides unbiased estimators.

fit2 <- lm(rating ~ complaints + raises, data=attitude)

fit2

##

## Call:

## lm(formula = rating ~ complaints + raises, data = attitude)

##

## Coefficients:

## (Intercept) complaints raises

## 11.9873 0.7128 0.0801

Notice that the coefficient estimate for complaints is a little different now
that the raises variable is included in the model.

7.3.2 Hypothesis Testing

As before, the summary command gives us significance probabilities for
testing each of the different null hypotheses that one particular linear
model coefficient is zero.

summary(fit2)

##

## Call:

## lm(formula = rating ~ complaints + raises, data = attitude)

##

## Residuals:

## Min 1Q Median 3Q Max

## -12.514 -6.496 0.205 6.233 9.591

##

## Coefficients:



inference on quantitative data 131

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 11.9873 8.4226 1.42 0.17

## complaints 0.7128 0.1331 5.35 1.2e-05 ***
## raises 0.0801 0.1705 0.47 0.64

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 7.09 on 27 degrees of freedom

## Multiple R-squared: 0.684,Adjusted R-squared: 0.66

## F-statistic: 29.2 on 2 and 27 DF, p-value: 1.77e-07

The significance probability for complaints isn’t as small as it was in our
first fit, but it’s still small enough to indicate solid evidence against the
null hypothesis that β1 is zero. The significance probability for raises,
however, isn’t very small; you don’t have much evidence against the claim
that the true value of the coefficient β2 is zero. However, if you consider
the linear model that only includes the raises variable, you find that the
significance probability is tiny.

fit3 <- lm(rating ~ raises, data=attitude)

summary(fit3)

##

## Call:

## lm(formula = rating ~ raises, data = attitude)

##

## Residuals:

## Min 1Q Median 3Q Max

## -19.12 -7.11 1.38 5.74 19.57

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 19.978 11.688 1.71 0.0985 .

## raises 0.691 0.179 3.87 0.0006 ***
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 10 on 28 degrees of freedom

## Multiple R-squared: 0.348,Adjusted R-squared: 0.325

## F-statistic: 15 on 1 and 28 DF, p-value: 0.000598

The estimate and the significance probability of each coefficient depends
on what other variables are being included in the model!

7.1 For the trees dataset, create a scatterplot of Volume and
Height and draw the least-squares line on the plot. Find the

significance probability of a test that the coefficient of Height

in the true line is zero. Would the result be significant at the
.01-level?



132 data analysis with r: the big picture

Next, fit the linear model that uses both Height and Girth as
explanatory variables (i.e. find the least-squares plane). Find the
significance probability of a test that the coefficient of Height

in the true plane is zero. Would the result be significant at the
.01-level?

7.4 Conclusion

A natural estimator for a population mean is the sample mean. Sam-
ple means are often approximately Normally distributed. Subtracting the
mean and dividing by the standard error results in a quantity that is ap-
proximately tn−1-distributed. Using this insight, we derived techniques to
do hypothesis tests and to construct confidence intervals for the popula-
tion mean.

When we want to analyze the relationship between multiple quanti-
tative variables, we can estimate the linear model coefficients using the
least-squares approach seen in Chapter 4. R’s output tells us whether or
not these coefficients are significantly different from zero based on the
data.



8 Inference on Categorical Data

We continue our tour of inference by looking at categorical variables
again. With a single categorical variable, we will consider all three infer-
ence tasks in the context of trying to figure out the proportion of the full
population that belongs to a given category. With two categorical vari-
ables, we will consider the task of testing for independence of the two
variables.

8.1 One Categorical Variable

Our primary example of iid data in Chapter 3 came from coin-tossing.
This example actually goes a very long way in helping us do inference on
one categorical variable. In fact, if you assume that your observations are
iid, then any categorical variable with only two categories can be mod-
eled by a set of independent Bernoulli random variables just like the coin
tosses. Even if there are more than two categories, you will see that many
questions of interest can still be addressed by the same reasoning.

Often a data set consists of observations that are not independent, and
thus not iid. An example is a sample of people from a population. Assume
you take a random sample of one hundred different Americans, and ask
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them if they will vote for Candidate A or Candidate B (for now, pretend
that those are the only two options). Assume there are N total Americans
to choose from, and that a of them are in favor of Candidate A. If the first
person selected is an A-voter (which happens with probability a/N), then
your selection second selection is from the N − 1 remaining Americans,
a − 1 of which are A-voters. So for the second selection, the probability
of getting an A-voter is (a− 1)/(N − 1), which is slightly smaller than it
was for the first selection. This is called “sampling without replacement,"
and it does not produce independent trials. On the other hand, if after
each selection you were to leave the selected person in the pool for future
selections, this is called “sampling with replacement." In our example,
the probability of getting an A-voter would be a/N for each selection,
regardless of the outcomes of the previous selections. Random sampling
with replacement results in iid data.11 If the population is a few orders of

magnitude larger than the sample,
then a random sample without re-

placement is still approximately iid
and can be treated as such. For in-

stance, the US population has a popu-
lation of well over 300 million people.
A typical survey might only sample a
few hundred or a few thousand peo-

ple. There’s very little difference in do-
ing the survey with or without replace-
ment. For simplicity, you can definitely

treat the data as if it were iid even if
the survey was without replacement.

8.1.1 Estimation

A natural question when thinking about a categorical variable is, what is
the population proportion of each category. If you have taken a sample (with
replacement) of n people in the US asking them to choose between Candi-
dates A and B, then your data would include the categorical variable with
categories “A" and “B" indicating the response of each person surveyed.
Define p := a/N the proportion of Americans who prefer Candidate A. It
is also the probability that each observation in your sample says “A." Each
observation of this categorical variable is logically equivalent to a coin-
flip, and can thus be modeled by a Bernoulli(µ) random variable, where
a response of “A" is counted as a 1 and any other response is 0. Recall
from Chapter 3 that the expected value of a Bernoulli(µ) random variable
is exactly µ. Recall also that the expected value of the sample mean of any
sample of identically distributed random variables is exactly equal to the
expected value of the random variables in the sample. The sample mean
in this case is just the proportion of observations that said “A." That is, the
proportion of A-voters in the sample is an unbiased estimator of the pro-
portion of A-voters in the American population. This reasoning applies to
each category individually, no matter how many categories there are.

As an example, let’s look at the computer files data yet again; let’s take
a random sample of 200 files (with replacement) from that population, and
then estimate the population proportion of docs.

x <- read.csv("http://quantitations.com/book/formats-sizes.csv")

head(x)

## format size

## 1 jpg 0.78

## 2 doc 0.15

## 3 doc 0.19

## 4 jpg 0.01

## 5 mp3 9.23

## 6 mp3 4.54

set.seed(1)
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n <- 200

s <- sample(1:nrow(x), n, replace=T)

y <- x[s, ]

dim(y)

## [1] 200 2

head(y)

## format size

## 2656 mp3 19.74

## 3722 mp3 6.35

## 5729 doc 0.09

## 9083 jpg 0.25

## 2017 jpg 0.16

## 8984 jpg 0.29

ndocs <- sum(y$format=="doc") # number of docs

d <- ndocs/nrow(y) # sample proportion of docs (and an estimate of population proportion)

d

## [1] 0.395

Variance is often used to assess the quality of an unbiased estimator.
Let X̄ be the sample proportion of A-voters, which is also a sample mean
of Bernoulli(µ) random variables. We know that the variance of a sample
mean is equal to the variance of the individual observations divided by
n. Each Bernoulli(µ) observation has variance µ(1− µ). Because we don’t
know µ, we also don’t know the variance. However, it is interesting to
note that we can upper bound the sample mean’s variance in this case. It
can be shown that the largest possible value for µ(1− µ) is 1/4 (occurring
when µ = 1/2). So we know that the variance of X̄ is no larger than 1/4n.

8.1.2 Hypothesis Testing

Back in Section 3.2.2 when hypothesis testing was first introduced, you
saw an example of how it can be applied to the heads probability of a coin,
and thus equivalently to the population proportion of a category. In that
same chapter, you also saw that an example of a bell-shaped distribution
for the sum of 20 Bernoulli(.5) random variables. Dividing by n doesn’t
change the shape, so the average of those random variables is also bell-
shaped. In fact, the CLT guarantees that the distribution of an average
of Bernoulli(µ) random variables (for any µ) will increasingly resemble a
Normal distribution as the sample size increases. This section will assume
that the sample size is large enough for a Normal approximation to be
appropriate, which is certainly the case with large-scale opinion polling.
Inference using sample means is discussed in some detail in Section 7.1,
so make sure you’ve read and understood that section before proceeding.

If the sample size is large enough, then X̄ is approximately Normal2 2 The close µ is to zero, the larger the
sample size needs to be for the Normal
approximation to work well.

with expected value µ and variance Var(Xi)/n. Recall from the derivation
in Section 3.1.3 that a Bernoulli(µ) random variable’s variance is equal to
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µ(1− µ). So X̄
approx∼ N(µ, µ(1− µ)/n).

Consider a hypothesis specifying a particular value for the population
proportion, H0 : µ = µ0. Assuming that hypothesis were true, then the
following z-statistic is approximately standard Normal.33 Notice that the null hypothesis

H0 also determines the variance in
this case because of the relation-
ship between E(Xi) and Var(Xi)
for Bernoulli random variables.

z :=
X̄− µ0√

µ0(1− µ0)/n

Therefore, the siginificance probability of the observed z-statistic is 2F(−|z|),
with F representing the standard Normal cdf.

In our example, we’ll consider the null hypothesis that the population
proportion of docs is 0.5, and find the significance probability.

mu0 <- .5

s <- mu0*(1-mu0)

z <- (d-mu0)/sqrt(s/n)

p <- 2*pnorm(-abs(z))

p

## [1] 0.0029795

8.1.3 Confidence Intervals

If the sample size is large enough, then

X̄− µ0

SE

is approximately standard Normal. As described in Section 7.1, SE is an
estimate of the standard deviation of X̄ defined as σ̂/

√
n. The estimated

standard deviation σ̂ of a quantitative variable was described in Chap-
ter 4. In this context, another valid estimator that you could use for σ is√

X̄(1− X̄); notice that it replaces the true µ with our estimate X̄ in the
expression

√
µ(1− µ) which is exactly σ.

Observe that

P
(
−2 ≤ X̄− µ

SE
≤ 2

)
≈ .95

follows from the Normal approximation. Rearranging the inequalities
gives an equivalent statement.

P (X̄− 2 SE ≤ µ ≤ X̄ + 2 SE) ≈ .95

That means that the probability is about .95 that the interval from X̄ −
2 SE to X̄ + 2 SE will cover the true population proportion µ. We call the
interval [X̄− 2 SE, X̄ + 2 SE] a 95% confidence interval.

An approximate 95% confidence interval for the population proportion
of docs is.
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SE <- sqrt(d*(1-d)/n)

c(d - 2*SE, d + 2*SE)

## [1] 0.32587 0.46413

The true population proportions are shown below for comparison.

table(x$format)/nrow(x)

##

## doc jpg mp3

## 0.3656 0.5199 0.1145

8.1 The data frame x contains the format and size (in MB) of all
the files on my computer. Pretend that you only have access to
a sample of size 200. Simulate this sample (the data frame y )
as shown below.

x <- read.csv("http://quantitations.com/book/formats-sizes.csv")

head(x)

set.seed(1)

s <- sample(1:nrow(x), 200, replace=T)

y <- x[s, ]

dim(y)

head(y)

From the sample, estimate the proportion of files on my com-
puter that are format jpg. Find the significance probability for
the hypothesis that half of the files on my computer are jpgs
(using Normal approximation), and find an approximate 95-
percent confidence interval for the true proportion of jpgs.

In this case, you actually have knowledge of the full population
(in x ). How close was your estimate to the true population
proportion? Did the hypothesis test make an error or not? Is
the true population proportion within your confidence interval?

8.2 Two Categorical Variables

When we discussed description of two categorical variables in Chapter 5,
we looked at plots of conditional distributions of one categorical variable
given the other. This led us to introduce the concept of independence; if
the two categorical variables are unrelated to each other (i.e. knowing the
value of one doesn’t affect your prediction of the other) then we consider
the variables independent. Informally, we said that if the conditional dis-
tributions all look about the same, then we might think the variables are
in fact independent. Now, we’ll take a formal approach to that question.
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8.2.1 Hypothesis Testing

The chi-squared test for independence begins with the null hypothesis that
the two variables are independent of each other. We won’t bother going
through it in detail. Suffice it to say that the test statistic depends on
how different the observed relative frequency table is from the relative
frequency table you would get by filling in each cell with the product of
the two variables’ marginal relative frequencies. The more the observed
frequencies differ from the product frequencies, the stronger the evidence
that the variables aren’t independent.

The chisq.test command takes a two-way frequency table and pro-
vides a significance probability of the test.

library(MASS)

#help(caith)

caith

## fair red medium dark black

## blue 326 38 241 110 3

## light 688 116 584 188 4

## medium 343 84 909 412 26

## dark 98 48 403 681 85

chisq.test(caith)

##

## Pearson's Chi-squared test

##

## data: caith

## X-squared = 1240, df = 12, p-value <2e-16

The test makes it abundandly clear that there is a relationship between
hair color and eye color in the population sampled for the caith dataset.
The chi-squared test does not, however, tell us anything more specific
about how the variables are related; such questions are beyond the scope
of this text.

8.3 Conclusion

For any single categorical variable, we estimated the proportion of the
population that belongs to each category. Using Normal approximation,
we also covered the tasks of hypothesis testing and selecting confidence
intervals as long as the sample size is large enough. With two categorical
variables, we saw how to test the hypothesis that they are independent.
The methods we covered in this section are collected into a piece of our
concept map. The “E," “H," and “C" indicate which of the three inference
tasks (estimation, hypothesis testing, and confidence intervals) are part of
the method.
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9 Inference on Both Types Together

We have at last reached the final corner of our diagram, in which we’ll
consider inference questions involving both types of variables together.
The primary type of question is whether the or not the categorical vari-
able’s groups differ in their distributions of a quantitative variable.

9.1 One Quantitative Variable and One Categorical Variable

As in Chapter 6, we can use the categorical variable to split up the quanti-
tative variable values into groups. In this section, we’ll be interested in the
difference between the groups’ population means. If there are only two
groups, we can easily estimate this difference, test whether it’s zero, and
derive a confidence interval. If there are more than two groups, our main
interest will be in whether or not there is a difference among their means.

9.1.1 Estimation

In the case of two groups, let’s use X1, X2, . . . and Y1, Y2, . . . to denote the
values of the quantitative variable for the different groups. Let µX and
µY be the two population means. X̄ and Ȳ are natural estimators for the
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population means, and X̄ − Ȳ is an unbiased estimator for the difference
between the two means.

E(X̄− Ȳ) = E(X̄)− E(Ȳ)

= µX − µY

Let’s look at the survey dataset again to demonstrate; Sex will be the
categorical variable, and Pulse will be the quantitative variable. The fol-
lowing code calculates the estimated difference in the mean pulse between
the two genders (female mean pulse minus male mean pulse). It also
draws side-by-side boxplots (to which I’ve added dots for the groups’
sample means).

library(MASS)

head(survey)

## Sex Wr.Hnd NW.Hnd W.Hnd Fold Pulse Clap Exer Smoke Height

## 1 Female 18.5 18.0 Right R on L 92 Left Some Never 173.00

## 2 Male 19.5 20.5 Left R on L 104 Left None Regul 177.80

## 3 Male 18.0 13.3 Right L on R 87 Neither None Occas NA

## 4 Male 18.8 18.9 Right R on L NA Neither None Never 160.00

## 5 Male 20.0 20.0 Right Neither 35 Right Some Never 165.00

## 6 Female 18.0 17.7 Right L on R 64 Right Some Never 172.72

## M.I Age

## 1 Metric 18.250

## 2 Imperial 17.583

## 3 <NA> 16.917

## 4 Metric 20.333

## 5 Metric 23.667

## 6 Imperial 21.000

z <- survey[, c("Sex", "Pulse")]

z <- z[complete.cases(z), ]

dim(z)

## [1] 191 2

n <- nrow(z)

k <- length(levels(z$Sex))

# There is one more male than there are females.

# We'll discard one male at random for this example.

table(z$Sex)

##

## Female Male

## 95 96

set.seed(1)

males <- which(z$Sex=="Male")

remove <- sample(males, 1)

z <- z[-remove, ]

table(z$Sex)
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##

## Female Male

## 95 95

n <- nrow(z)

# Draw the boxplots with dots for means.

boxplot(Pulse ~ Sex, data=z, col=2:(k+1))

m <- mean(z$Pulse)

abline(h=m, lty=2)

means <- aggregate(Pulse ~ Sex, data=z, mean)

points(1:nrow(means), means$Pulse, pch=16)

# Estimated difference in means

d <- means$Pulse[1] - means$Pulse[2]

d

## [1] 1.7895

Female Male
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In the case of more than two groups, the quantitative variable can be
split up by group, and each group’s population mean can be estimated by
its sample mean.

9.1.2 Hypothesis Testing

We’ll start with a partial explanation of testing the hypothesis that two
groups’ population means are equal, showing that it can be approached
similarly to the hypothesis testing problem from Section 7.1.2. To simplify
things, let’s assume that an equal number of observations belong to each
group, n/2 each. We’ll also need to assume that the two groups have the
same variance:1 Var(Xi) = σ2 = Var(Yi). Then, if the observations are 1 A side-by-side boxplot can give you

a visual impression of whether or
not the different groups seem to have
about the same spread.

approximately Normal or if the sample size is large enough, the sample
means are approximately Normal.2 More specifically,

2 You might think that this section
requires n ≥ 60, so that each group’s
sample size is at least 30. However, as
you’ll see, we’re primarily going to be
interested in X̄ − Ȳ, which is a sum
of n random variables. By the CLT
phenomenon, it is more Normal than
either X̄ or Ȳ. So you can still use the
sample-size-30 rule for this method.
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X̄
approx∼ N

(
µX ,

σ2

n/2

)
andȲ

approx∼ N
(

µY,
σ2

n/2

)
Using the expected value and variance rules from Chapter 3, the distri-
bution of the difference X̄ − Ȳ must be N(µX − µY, 4σ2/n). To (approxi-
mately) standardize this variable, we need to estimate σ. In this chapter
we will use a slightly different estimator than the σ̂ defined in Chapter 4

and used in Chapter 7.3 Instead, we use s defined by3 Actually, the new estimator we de-
fine can be considered a generaliza-

tion of the one you already know.
s2 := ∑(Xi − X̄) + ∑(Yi − Ȳ)

n− 2

Our estimate of the standard deviation of X̄ − Ȳ is the square root of its
variance, substituting s for σ:

SE :=
2s√

n

The (approximately) standardized variable

(X̄− Ȳ)− (µX − µY)

SE

has a tn−2 distribution.44 It has exactly this distribution if the
data are exactly Normal; on the other

hand, it has approximately this distri-
bution if you’re relying on the CLT.

Now consider the null hypothesis that µX = µY. Assuming this is true,
the numerator of the standardized variable simplifies, and we can define
the t-statistic

t :=
X̄− Ȳ

SE
approx∼ tn−2

Once you’ve calculated this test statistic, the significance probability is
simply 2F(−|t|), where F is the tn−2 cdf. If you compare this p-value to a
threshold, this is called a two-sample t-test.

We continue the survey data example below.

sum.squares.res <- function(v) {

ss <- sum((v - mean(v))^2)

return(ss)

}

SSRs <- aggregate(Pulse ~ Sex, data=z, sum.squares.res)

SSRs

## Sex Pulse

## 1 Female 12230

## 2 Male 13503

SSR <- sum(SSRs$Pulse)

SSR

## [1] 25734

sigma.hat <- sqrt(SSR/(n-2))

SE <- 2*sigma.hat/sqrt(n)

t <- d/SE

t
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## [1] 1.0541

p <- 2*pt(-abs(t), df=n-2)

p

## [1] 0.29317

The R function t.test provides a simpler way to do this.

t.test(Pulse ~ Sex, data=z, var.equal=TRUE)

##

## Two Sample t-test

##

## data: Pulse by Sex

## t = 1.05, df = 188, p-value = 0.29

## alternative hypothesis: true difference in means is not equal to 0

## 95 percent confidence interval:

## -1.5592 5.1382

## sample estimates:

## mean in group Female mean in group Male

## 75.126 73.337

summary(aov(Pulse ~ Sex, data=z))

## Df Sum Sq Mean Sq F value Pr(>F)

## Sex 1 152 152 1.11 0.29

## Residuals 188 25734 137

If you have unequal group sizes or if the two groups don’t have the
same variance, things work a little differently. The theory is a bit more
complicated to derive, so we won’t cover it. But you can still use the
t.test function, and it will do the right thing.

What if there are more than two groups? In that case, we can still test
for a difference using one-way ANOVA.5 Let k be the number of different 5 ANOVA stands for “analysis of

variance."categories represented in the dataset. We don’t need equal group sizes,
but ANOVA theory does require that the groups have normal distribu-
tions with equal variances. This time the test statistic that we define will
have an F distribution. The family of F distributions are identified by two
parameters called the numerator degrees of freedom (df1 in R) and the denom-
inator degrees of freedom (df2). For example, the plot below shows the pdf
of the F2,189 distribution.

grid <- seq(0, 10, length.out=100)

density <- sapply(grid, df, df1=2, df2=189)

plot(grid, density, type="l", col=3, xlab="x",

main="The F distribution with 2 and 189 degrees of freedom")

abline(h=0, lty=2)

Let’s take a look at an example from the survey dataset, using exercise
as the categorical variable and pulse as the quantitative variable.
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Figure 9.1: The pdf of the F distri-
bution with 2 and 189 degrees of
freedom, shown from 0 to 10. The
vast majority of the probability is in
the region shown, but the density is
positive from 0 to infinity.

x <- survey[, c("Pulse", "Exer")]

# Change the order of Exer from (Freq, None, Some)

# to (None, Some, Freq)

x$Exer <- factor(x$Exer, levels(x$Exer)[c(2, 3, 1)])

# Drop the observations with missing values

x <- x[complete.cases(x), ]

dim(x)

## [1] 192 2

n <- nrow(x)

k <- length(levels(x$Exer))

boxplot(Pulse ~ Exer, data=x, col=2:(k+1))

m <- mean(x$Pulse)

abline(h=m, lty=2)

means <- aggregate(Pulse ~ Exer, data=x, mean)

points(1:nrow(means), means$Pulse, pch=16)
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The groups look to have symmetric distributions with similar spreads, so
one-way ANOVA seems justifiable. The groups’ sample means have been
drawn in on the boxplot, because they will play an important role in the
method.

Our null hypothesis will be that the groups all have the same population
mean.6 If this hypothesis were true, then the F-statistic has an Fk−1,n−k

6 The different categories of the cate-
gorical variable split the full popula-
tion up into k subpopulations. Each
of these subpopulations has its own
population mean. Our null hypothesis
is that all of these subpopulations’
means are equal (which also implies
that they’re all equal to the overall
population mean).

distribution.

F :=
SSG/(k− 1)
SSR/(n− k)

(9.1)

where SSG is the “group sum of squares" and SSR is the “residual sum of
squares." Each data point contributes to both SSG and SSR. Its SSG con-
tribution is the squared difference between its group’s sample mean and
the overall sample mean; its SSR contribution is the squared difference
between the the point and its group’s sample mean. Add up the contribu-
tions of all the observations to get the sums: SSG and SSR.

# Calculate the group sum of squares

sum.squares.group <- function(v) {

ss <- length(v)*(mean(v) - m)^2

return(ss)

}

SSGs <- aggregate(Pulse ~ Exer, data=x, sum.squares.group)

SSGs

## Exer Pulse

## 1 None 116.13

## 2 Some 331.77

## 3 Freq 452.56

SSG <- sum(SSGs$Pulse)

SSG

## [1] 900.47

# Calculate the residual sum of squares
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SSRs <- aggregate(Pulse ~ Exer, data=x, sum.squares.res)

SSRs

## Exer Pulse

## 1 None 3201.1

## 2 Some 10760.2

## 3 Freq 11226.9

SSR <- sum(SSRs$Pulse)

SSR

## [1] 25188

Let’s go ahead and calculate the value of the F-statistic.

num <- SSG/(k-1)

denom <- SSR/(n-k)

f <- num/denom

f

## [1] 3.3783

Take another look at the definition of the F-statistic in equation (??); it is
proportional to SSG. The larger SSG is, the further away the group sam-
ple means are from the overall sample mean, overall. So it makes sense
that large values of F provide evidence against the null hypothesis that the
group means are equal. The significance probability for this null hypothe-
sis is equal to the probability that an Fk−1,n−k random variable would be at
least as large as the observed F value, which is one minus the appropriate
cdf evaluated at F.

p <- 1-pf(f, df1=k-1, df2=n-k)

p

## [1] 0.036176

The built-in aov function can also be used for ANOVA. In fact, so can
the lm function you already seen in Chapters 4 and 7.

a <- aov(Pulse ~ Exer, data=x)

a

## Call:

## aov(formula = Pulse ~ Exer, data = x)

##

## Terms:

## Exer Residuals

## Sum of Squares 900.5 25188.2

## Deg. of Freedom 2 189

##

## Residual standard error: 11.544

## Estimated effects may be unbalanced
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summary(a)

## Df Sum Sq Mean Sq F value Pr(>F)

## Exer 2 900 450 3.38 0.036 *
## Residuals 189 25188 133

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

fit <- lm(Pulse ~ Exer, data=x)

summary(fit)

##

## Call:

## lm(formula = Pulse ~ Exer, data = x)

##

## Residuals:

## Min 1Q Median 3Q Max

## -41.19 -7.97 -0.19 7.81 32.03

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 76.765 2.800 27.42 <2e-16 ***
## ExerSome -0.577 3.083 -0.19 0.85

## ExerFreq -4.796 3.040 -1.58 0.12

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 11.5 on 189 degrees of freedom

## Multiple R-squared: 0.0345,Adjusted R-squared: 0.0243

## F-statistic: 3.38 on 2 and 189 DF, p-value: 0.0362

9.1.3 Confidence Intervals

Returning to the two-group case, we’ll construct a 95% confidence interval
for the difference between the two genders’ average pulses (female minus
male). Because the sample sizes were large, the standardized variable is
close enough to standard Normal that we can just use 2 standard errors as
our margin of error.

c(d - 2*SE, d + 2*SE)

## [1] -1.6056 5.1846

Error bars on plots can give an indication of the uncertainty of estimates.
For instance, in the plot below,7 we’ve placed error bars giving approxi- 7 You’ll need to run

install.packages("Hmisc") the

first time you want to use the Hmisc

library demonstrated in the code
below.

mate 95% confidence intervals for each subpopulation’s mean, calculated
separately according to the method in Section 7.1.3. Often, data analysts
draw error bars extending out one standard error in each direction. When-
ever you draw error bars, you should explain to your readers what they
indicate.
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library(Hmisc)

## Loading required package: lattice

##

## Attaching package: ’lattice’

## The following object is masked from ’package:corrgram’:

##

## panel.fill

## Loading required package: survival

## Loading required package: Formula

## Loading required package: ggplot2

##

## Attaching package: ’Hmisc’

## The following objects are masked from ’package:base’:

##

## format.pval, units

ns <- table(x$Exer)

SEs <- aggregate(Pulse ~ Exer, data=x, sd)$Pulse/sqrt(ns)

qs <- qt(.975, df=ns)

barplot(means$Pulse, names.arg=means$Exer, col=2:4,

ylim=c(0, max(means$Pulse + qs*SEs)))

errbar((1:3)*1.2-.5, means$Pulse, means$Pulse + qs*SEs, means$Pulse - qs*SEs,

add=TRUE)

None Some Freq
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People often try to draw conclusions about whether or not two un-
known quantities are significantly different based on whether or not their
error bars overlap. That practice is roughly accurate sometimes, but you
should be careful about taking such conclusions too seriously.

9.2 One Quantitative Variable and Two Categorical Variables

two-way ANOVA
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9.2.1 Estimation

9.2.2 Hypothesis Testing

9.3 Two Quantitative Variables and One Categorical Variable

In this section, we will revisit the gas mileage data from our coverage of
Description in Section 6.3. This time we will take a more formal approach
to the question of whether or not the different groups should get different
fit lines.

As in Section 7.2, the key concept here will be the Linear Model; in this
case, we’ll have one quantitative response variable, along with a categori-
cal and a quantitative explanatory variable. It is important to realize that
there is actually no limit to how many variables (and which types of vari-
ables8) can be used in a Linear Model, making it a remarkably versatile 8 The cases covered in this book have

all used a quantitative response vari-
able. A categorical response variable is
handled a little differently.

method. In fact, one-way ANOVA and two-way ANOVA covered earlier in
this chapter, are simply special cases of Linear Models. The Linear Model
is the workhorse of data analysis.

9.3.1 Estimation

In the case at hand, we will let Yi be the ith observation’s gas mileage
(in gallons per mile), Xi be the weight, and Oi be the origin (America,
Europe, or Japan). We will assume that the variables satisfy an equation
of the form

Yi = β0 + β1Xi + β2I{Oi = “Europe”}+ β3I{Oi = “Japan”}
+ β4XiI{Oi = “Europe”}+ β5XiI{Oi = “Japan”}+ εi

where I represents the indicator function.9 For any car model from Amer- 9 The indicator function is equal to 1
when its argument is a true condition
and 0 when its argument is a false
condition.

ica, the equation simplifies to

β0 + β1Xi + εi,

but for a car model from Europe, for instance, the equation is

(β0 + β2) + (β1 + β4)Xi + εi.

In fact, each different Origin category has its own line. You can see that
the intercept for Europe’s line is β0 + β2, and its slope is β1 + β4. Thus β0

and β4 represent the difference between Europe’s intercept and slope and
America’s intercept and slope.10 10 Based on alphabetical ordering, we

used America as the baseline origin. If
you were to reorder the groups in the
R object, then the interpretation of the
coefficients would be different.

The overall least-squares fit gives you (β̂0, . . . , β̂5), estimating Amer-
ica’s intercept and slope, along with the differences from the intercepts
and slopes of Europe and Japan. Again, these are unbiased estimates of
(β0, . . . , β5). Also, the individual least-squares lines you get by combining
the coefficient estimates in the appropriate ways are exactly the same three
lines you would get if you made a least-squares line separately for each
group.
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library(corrgram)

head(auto)

## Model Origin Price MPG Rep78 Rep77 Hroom Rseat Trunk Weight

## 1 AMC Concord A 4099 22 3 2 2.5 27.5 11 2930

## 2 AMC Pacer A 4749 17 3 1 3.0 25.5 11 3350

## 3 AMC Spirit A 3799 22 NA NA 3.0 18.5 12 2640

## 4 Audi 5000 E 9690 17 5 2 3.0 27.0 15 2830

## 5 Audi Fox E 6295 23 3 3 2.5 28.0 11 2070

## 6 BMW 320I E 9735 25 4 4 2.5 26.0 12 2650

## Length Turn Displa Gratio

## 1 186 40 121 3.58

## 2 173 40 258 2.53

## 3 168 35 121 3.08

## 4 189 37 131 3.20

## 5 174 36 97 3.70

## 6 177 34 121 3.64

y <- auto

levels(y$Origin)

## [1] "A" "E" "J"

levels(y$Origin) <- c("America", "Europe", "Japan")

fit3 <- lm(I(1/MPG) ~ Weight*Origin, data=y)

plot(y$Weight, 1/y$MPG, col=as.numeric(y$Origin)+1, xlab="Weight",

ylab="Gas Consumption (gallons/mile)",

main="Weights and Fuel Efficiencies of Cars from Different Origins")

legend("topleft", legend=levels(y$Origin),

text.col=2:(k+1), fill=2:(k+1))

abline(fit3$coef[1], fit3$coef[2], col=2)

abline(fit3$coef[1] + fit3$coef[3], fit3$coef[2] + fit3$coef[5], col=3)

abline(fit3$coef[1] + fit3$coef[4], fit3$coef[2] + fit3$coef[6], col=4)

fit3

##

## Call:

## lm(formula = I(1/MPG) ~ Weight * Origin, data = y)

##

## Coefficients:

## (Intercept) Weight OriginEurope

## 2.19e-03 1.54e-05 -2.99e-03

## OriginJapan Weight:OriginEurope Weight:OriginJapan

## -1.97e-02 4.22e-06 1.03e-05
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9.3.2 Hypothesis Testing

summary(fit3)

##

## Call:

## lm(formula = I(1/MPG) ~ Weight * Origin, data = y)

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.020764 -0.002489 0.000075 0.003562 0.011186

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 2.19e-03 3.90e-03 0.56 0.58

## Weight 1.54e-05 1.16e-06 13.35 <2e-16 ***
## OriginEurope -2.99e-03 9.19e-03 -0.33 0.75

## OriginJapan -1.97e-02 1.47e-02 -1.34 0.18

## Weight:OriginEurope 4.22e-06 3.60e-06 1.17 0.24

## Weight:OriginJapan 1.03e-05 6.38e-06 1.61 0.11

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.00587 on 68 degrees of freedom
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## Multiple R-squared: 0.804,Adjusted R-squared: 0.79

## F-statistic: 55.8 on 5 and 68 DF, p-value: <2e-16

The task of deciding among the fits is called model selection. Like Linear
Models, it is tremendous field of study that this book barely provides a
first glimpse of.

9.4 Conclusion

This concludes our basic survey of data analysis. But remember, it’s still
only the tip of the iceberg. If you want to be a data analyst, I encourage
you to select a next book to further your knowledge. Then go through
another book. And then another. All the while, come up with your own
data analysis projects or find a researcher or business who you can try
to assist. An effective data analyst never stops exploring and never stops
learning.


	I Introductory Material
	Overview
	What is Data?
	What is Data Anaysis?
	The Mix of Variable Types
	The Big Picture

	R Basics
	Setting Up
	Language fundamentals
	R Packages
	Markdown
	More

	Probability and Inference
	Probability
	Inference
	Conclusion


	II Description
	Description of Quantitative Data
	One Quantitative Variable
	Two Quantitative Variables
	Three Quantitative Variables
	Conclusion

	Description of Categorical Data
	One Categorical Variable
	Two Categorical Variables
	Conclusion

	Description of Both Types Together
	One Quantitative Variable and Categorical Variable
	One Quantitative Variable and Two Categorical Variables
	Two Quantitative Variables and One Categorical Variable
	Conclusion


	III Inference
	Inference on Quantitative Data
	One Quantitative Variable
	Two Quantitative Variables
	Three Quantitative Variables
	Conclusion

	Inference on Categorical Data
	One Categorical Variable
	Two Categorical Variables
	Conclusion

	Inference on Both Types Together
	One Quantitative Variable and One Categorical Variable
	One Quantitative Variable and Two Categorical Variables
	Two Quantitative Variables and One Categorical Variable
	Conclusion



