
THERE are a lot of documents that should be brought together into this one!!
ALSO LOOK at my PROSPECTUS! AND INFO theory assignments. AND
the two overleaf documents.

Chapter (CITE) introduced a number of divergences that can be used to
quantify how different two probability distributions are from each other. One
of them was information divergence (I-divergence), a concept with roots in
communication theory. (SIDENOTE: The I-divergence is more commonly
known as Kullback-Leibler divergence (“KL-divergence”) or relative entropy.
I prefer the term I-divergence because it comports with the I-projection
terminology introduced later in this section.) However, the I-divergence, along
with other concepts from communication theory, turns out to be central to a
number of important questions in probability and statistics. The study of these
concepts at the intersection of communication and probability comprises a field
in its own right, known as information theory.

In this chapter, we’ll discuss entropy, I-divergence, and mutual information, the
core quantities of information theory, and point out some of the ways in which
they arise in answers to communication and probability questions; you’ll also
find them continuing to pop up in future sections and chapters.

1 Definitions and basics

1.1 Entropy

(MAKE SURE I DEFINE “discrete set” in Chapter 0 and “discrete random
variable” in Chapter 1)

Let X be a discrete random variable with density p with respect to the counting
measure. The entropy of X is defined to be (SIDENOTE: For convenience, we
will often simply use a probability measure as the argument (e.g. H(P )).)

H(X) := E log
1

p(X)
(1)

(SIDENOTE: There are various notions of “entropy,” especially in physics. A
more specific name for (1) is Shannon entropy.) Notice that the actual values
taken by X don’t matter; only the probabilities are relevant. In fact, X doesn’t
have to be real-valued; it can be any discrete random element. And entropy
is invariant under any one-to-one mapping f (from the support of X to any
space): H(X) = H(f(X)).

1. Find the entropy of the Bernoulli distributions as a function of the
Bernoulli parameter θ. What is the entropy when θ = 1/2?

INCLUDE A PLOT (like in Cover and Thomas) of the Bernoulli entropy in
bits as a function of θ.

If you work out Exercise (NUMBER), you will find that the entropy of a fair
coin flip is log 2. For now, let’s assume that we are using the base-2 logarithm;
the unit of measurement in that case is called “bits.” So the entropy of a
fair coin flip is 1 bit. If you repeat this exercise for a uniformly distributed
random variable with a support of 4 elements, you will find that the entropy is
2 bits. With a support of 8 elements, the entropy is 3 bits. In each of these
cases, the entropy is telling you how many symbols you would need to use to
uniquely encode all of the possible elements with an equal codelength; each set
of symbols representing an element is called the codeword for that element.
(PICTURE OF TREE FOR 4-symbol CASE.)

We can extend this interpretation of entropy to arbitrary discrete distributions,
if we take note of a few details. First, if the distribution isn’t uniform, then
we don’t necessarily want equal codelengths. Instead. let’s say we want the
most efficient prefix-free code that we can achieve. A code is prefix-free if you
can always tell when you’re at the end of a codeword without having to look
ahead; you can be sure that a code is prefix-free if every codeword is a leaf on
the tree (REFER to PICTURES), meaning that it has no children. But which
prefix-free code is most efficient?

To answer this question, let us observe that there is an equivalence between
distributions and prefix-free codes. Given any discrete distribution P , one
can construct a prefix-free code that assigns codewords of l(x) = log(1/p(x))
bits to each x ∈ X . The entropy is the expected codelength when using this
code when the data is generated by P . (SIDENOTE: We might want to refer
to the log(1/p(x)) values as idealized codelengths, because we can’t actually
create those codes if the codelengths aren’t integers. In that case, you can
get arbitrarily close to the idealized expected codelength H(P ) by grouping
consecutive symbols together before encoding them. This is an important
practical detail, but it isn’t important in most theoretical regards.) Likewise,
given any prefix-free code for x that has codelengths l(x), one can invert the
above relationship to get p(x) = e−l(x); if the code isn’t wasteful (i.e. if the tree
terminates), these p(x) values sum to one. (SIDENOTE: Otherwise if the code
is wasteful, then the p(x) sum to less than 1 and P is called a subprobability
distribution.) The tree picture is the key to seeing this equivalence between
prefix-free codelengths and probability distributions. Given any prefix-free
coding, the corresponding set of exponential negative codelengths (e−l(x)) is
called the coding distribution.

In fact, the entropy is the best possible [idealized] expected prefix-free code-
length. How do we know that no better code is possible? Let P be the distribu-
tion generating your data and Q be the coding distribution that you are using.
Then the expected codelength is (SIDENOTE: This quantity is also known as
the cross entropy.)

EP log
1

q(X)
= EP log

p(X)

q(X)
+ EP log

1

p(X)

= D(P‖Q) +H(P ) (2)

Because D is non-negative (recall CITE EXERCISE), this codelength is
uniquely minimized when the coding distribution Q is equal to the generating
distribution P . (SIDENOTE: Here we’re thinking of the logs as base-2 but the
I-divergence is still non-negative; it’s simply being measured in a different unit
that is a positive scalar multiple (loge 2, to be precise) of the usual units.)

Entropy seems like a natural way of quantifying “information” because it
represents the expected number of bits needed to specify the value of a random
variable. This idea motivates the term information theory to refer to the field
of study summarized in this section.

CODE-LENGTHS - make a note of the bits/nats complications! AND the fact
that the log reciprocal probabilities aren’t typically integers. both of these
details are conceptually unimportant for most purposes.

We will also find (1) a useful quantity when X has a continuous distribution
(and its density is with respect to Lebesgue measure), although in that case
it behaves a little differently. For instance, it can be negative and it isn’t
invariant under one-to-one mappings. (SIDENOTE: An alternative definition
of entropy for continuous random variables that retains more of the familiar
entropy interpretation is based on a concept called the “limiting density of
discrete points.”) When the distribution is continuous, the quantity (1) is
often called differential entropy and denoted by a lower case h. We also use
the lower case h when the random variable could be either discrete or continuous.

ANDREW’s interpretation relating h to coding/knowledge.
MAKE SURE the observation h(X+a) = h(X) comes up in an exercise. What
about h(BX)? USE the LOCATION-SCALE families stuff from the previous
section to address this. POINT out that this is different from the discrete case
where one-to-one mappings don’t affect entropy. Discrete distributions:

2. Express entropy in terms of a geometric expectation (CITE EXERCISE
from section 1-2).

AN OVERALL codelength is the same as a sum of conditional codelengths.
SEE DISCUSSION in my prospectus.
The conditional entropy of Y given another random variable X is defined to be

h(Y |X) := E log
1

p(Y |X)
(3)

Note that unlike conditional expectations (e.g. E[Y |X]), the conditional
entropy is not random; the expectation in (3) is being taken over both X and
Y .

In the discrete case, conditional entropy can be interpreted as the expected
code-length for Y assuming that both yourself and the message receiver will
learn the value of X and that you will then use an optimal code for Y given the
observed value of X.
WHAT ABOUT “joint entropy” - cover it but point out that it’s really nothing
new! Just the entropy of a random vector.

3. Let X be a mixture of X1, X2, . . . with mixing probabilities p1, p2, . . .;
let θ be the random variable representing the selection of j ∈ {1, 2, . . .}.
Assume the Xj take values on disjoint supports from each other. Show
that

H(X) = H(θ) +
∑
j

pjH(Xj)

Then devise X1, X2, . . . and p1, p2, . . . such that H(X) =∞.

4. Show that we can bound the entropy of P by

EX∼P f(X) + µe−f

for any function f such that EX∼P f(X) > −∞. (SIDENOTE: Here µ
represents counting measure for discrete entropy and Lebesgue measure
for differential entropy.) [Hint: Use the fact that cross entropies are always
larger than entropy, as seen in (2).]

1.2 I-divergence

The I-divergence from P to Q is defined as

D(P‖Q) := EP log
p(X)

q(X)
(4)

(MAKE SURE I’ve pointed out and justified the convention 0 log 0 = 0.) We
can see a communication theory interpretation from expressing D as cross
entropy minus entropy as in (2): D(P‖Q) measures the expected “price” in that
you would pay by using a coding distribution for Q when the true distribution
is P . (SIDENOTE: Notice that if any set has positive P measure but zero
Q measure, then D(P‖Q) = ∞. In our communication theory interpretation,
such a Q just can’t code for P because it doesn’t have a codeword for one (or
more) of P ’s possible selections.)

Recall that D(·‖·) is an f -divergence (with either order of the arguments!), so
it inherits the f -divergence properties we showed in section (CITE SECTION).
The fact that D(P‖Q) ≥ 0 is called the information inequality or the Gibbs
inequality.

ALSO TELL the reader that I-divergence is a Bregman divergence (CITE the
section where it is covered) - YOU will show this in Exercise (NUMBER). SO
POINT out that I-divergence inherits the properties we’ve already established
for Bregman divergences. LIST the properties.

REMIND reader of some inequalities established in CITE Sections/Exercises
IF there are any relevant ones.

FINALLY, Gather more facts and properties:
CAN be written as an expectation of a non-negative quantity. This justifies
interchanges of order of integration!

Pinsker’s inequality says that total variation distance can be bounded by a
function of I-divergence. We’ve seen in Exercise (NUMBER in section 2-2) that
I-divergence bounds squared Hellinger divergences and in Exercise (NUMBER
in section 2-7) the squared Hellinger distance bounds squared total variation
distance, so we can already conclude that D(P‖Q) ≥ d2

TV(P,Q). This can be
strengthened slightly to

dTV(P,Q) ≤
√
D(P‖Q)

2

(CITE Pollard section 3.3) (SIDENOTE: And of course, because dTV is
symmetric, it is also bounded by

√
D(Q‖P )/2.) This tells us that convergence

in I-divergence implies convergence in dTV. (SIDENOTE: But there is no
possible inequality in the other direction as long as the sample space has more
than one atom. For instance, let Q concentrate all its mass on x ∈ Ω, while P
puts 1− ε mass on x and ε > 0 mass on y. Then dTV(P,Q) = ε while D(P‖Q)
is infinite no matter how small ε gets.)

I-divergence is the only f -divergence that has iterative projection on linear sub-
spaces, or something like that... see link:

1.3 Mutual information

The mutual information between X and Y is the entropy of Y minus the con-
ditional entropy of Y given X.

I(X;Y ) := h(Y )− h(Y |X)

You can think of it as the expected reduction in entropy of Y that you would
achieve by learning X.

5. Show that

I(X;Y ) = D(PX,Y ‖PXPY )

where PX,Y is the joint distribution and PX and PY are the marginals.

The identity from Exercise (CITE) shows us that mutual information is
symmetric in its arguments: I(X;Y ) = I(Y ;X). It also tells us that it is
non-negative, which implies that conditional entropies can’t be larger than
the unconditional entropy. Finally, recall that relative entropy is zero iff the
arguments are the same distribution; in that case, that means PX,Y = PXPY .
This means that I(X;Y ) is zero iff X and Y are independent; mutual informa-
tion can be thought of as quantifying the amount of dependence between its
arguments. And the conditional entropy h(Y |X) equals h(Y ) iff X and Y are
independent.

It can be shown that I(X;Y ) is convex in PY |X for any fixed PX and that it
is concave in PX for any fixed PY |X . See (CITE Cover and Thomas Theorem
2.7.4) for the proofs.
Entropies, conditional entropies, and mutual informations can be visualized
using Venn diagrams. EXPLAIN AND ILLUSTRATE.

Make sure I include the important stuff from Cover and Thomas Chapter 2,
through section 2.5, AND Conditional mutual information (and its nonnegativ-
ity, Cover and Thomas Corollary 2.92) AND Theorem 2.6.6.

6. Show that entropy is strictly concave. That is given any P1 and P2 that
are distinct probability measures on some measurable space, show that

h(λP1 + (1− λ)P2) > λh(P1) + (1− λ)h(P2)

for any λ ∈ (0, 1)

7. Show that

I(X;Y ) = EXD(PY |X‖PY )

where PY |X is the conditional distribution of Y given X (which is random
because it is a function of X).

8. The generalized I-divergence extends I-divergence to the set of all finite
signed measures on a subset of (R,B) or on a discrete space. It is defined
by

D(P‖Q) := µ p log
p

q
− µ p+ µ q

where p and q are densities of signed measures P and Q with respect to
µ, which is either Lebesgue or counting measure. (SIDENOTE: Notice
that when P and Q are probability measures, this reduces to the ordinary
I-divergence.) We can similarly define generalized entropy as h(P ) :=
µ p log(1/p). Show that D is a Bregman divergence with φ(P ) = −h(P )−
µ p. (SIDENOTE: For the definition of Bregman divergence, in this case
use the L2 inner product: 〈P,Q〉 := µ pq.)

9. Show that

ED(Q‖Pθ) = ED(P̃θ‖Pθ) +D(Q‖P̃θ)

10. Explain why

ED(Pθ‖Qα) = ED(Q̃α‖Qα) + ED(Pθ‖P̄θ) +D(P̄θ‖Q̃α)

Venn diagram picture - but warn the reader not to put too much stock into
this picture when there are more than two variables! ISN’T IT possible to get
negative I(X,Y, Z)? IF SO, give an example maybe. I GUESS I(·, ·, ·) isn’t a
“mutual information” anyway - the definition is limited to two RVs.

11. Find the [differential] entropy of a multivariate normal random variable.
Use this to derive an expression for the mutual information I(X,Y ) of
jointly normal random variables X and Y in terms of their correlation.

DATA processing inequality - Cover and Thomas sections 2.8-2.9 THIS IS
WRITTEN up somewhere! Cover the mutual information formulation and the
relative entropy formulation!!! And define sufficient statistic.

FANO’s inequality - Cover and Thomas 2.10 TAKE this from my minimax doc-
ument. (WHAT is its relation to mutual information, from that document???
THAT is a good way to make it fit in this subsection.) I DON’T think I have
a proof typed up, do I? Probably not worth including, but point to Cover and
Thomas.

2 I-divergence geometry

I HAVE A LOT TYPED UP FOR THIS in my documents.
GOOD DESCRIPTION of the relationship between I-projection and rI-
projection for intersection of linear and exponential families - MAKES it seem
like this result is very much like the Hilbert space projection idea.

12. Show that the set of distributions that have Q as their I-projection onto
S is log-convex.

Sometimes there is no I-projection or rI-projection in the set, but there is a
unique distribution (IN THE INFORMATION CLOSURE?) that behaves like
the projection. (ARE THESE the I-projection and rI-projection onto the INFO
and rINFO closures of the set?)
Let Q be a PM and S be a set of PMs on the same measurable space. If there
exists a unique Q∗ such that every sequence (Pn) ⊆ S for which D(Pn‖Q) →
D(S‖Q) I-converges to Q∗ (that is, D(Pn‖Q∗)→ 0), then Q∗ is called the gen-
eralized I-projection of Q onto S. Alternatively, if there exists a unique Q∗ such
that every sequence (Pn) ⊆ S for which D(Q‖Pn) → D(Q‖S) rI-converges to
Q∗ (that is, D(Q∗‖Pn) → 0), then Q∗ is called the generalized rI-projection of
Q onto S. (SIDENOTE: When the I-projection exists, it is also the generalized
I-projection, of course. Likewise for rI-projections.)
FROM I-PROJ revisited THEOREM 1: - CHECK IF THIS theorem is specific
to prob measures or if it extends to general signed measures!

Theorem 2.1. Let Q be a probability measure on a measurable space (X ,A).
If S is a convex set of probability measures on (X ,A), then there exists a unique
PM QS such that

D(P‖Q) ≥ D(P‖QS) +D(S‖Q)

for any P ∈ S. If S is a log-convex set of probability measures on (X ,A), then
there exists a unique QS such that

D(Q‖P ) ≥ D(Q‖S) +D(QS‖P )

for any P ∈ S.

CAN IT BE PROVEN by taking derivatives? (one of these can but i don’t know
about the other) also look at cziszar’s proof - neat stuff about log-mixtures in
there.
EXERCISE - prove theorem (or at least part of it)

13. Explain why QS is a generalized I-projection from Q to S and why QS is
a generalized rI-projection from Q to S.

OUT of curiosity, IS D(S‖Q) = D(Q∗‖Q) ?? Likewise for generalized rI-
projection?

2.1 Maximum entropy

FINDING max ent distributions. WHY do people care about these? IT is a
method for inference - discuss this in a future chapter.

14. Let U and X both have the same support X , and let U be uniformly
distributed. Show that

h(U) = h(X) +D(PX‖PU ) (5)

By the information inequality and the fact that I−divergence separates points,
we see that the uniform distribution’s entropy is strictly greater than than that
of any other distribution on X . Furthermore, we can explicitly state the entropy
of U because we know that the density for U must be (µX )−1

h(U) = E log
1

pU (X)

= E logµX
= logµX

The entropy of a uniform distribution is the log of the “size” of its support,
quantified by µX . If X is discrete, then µ is the counting measure: µX = |X |.
If X is continuous, then µ is Lebesgue measure; if X is, for example, an interval
(a, b), then µX = (b− a).

With this expression for h(U), let’s refine (5). When a uniform distribution
exists with the same support as X, the entropy of X can be expressed as

h(X) = logµX −D(PX‖PU )

15. Which Bernoulli distribution has the largest entropy?

16. Is the family of Bernoulli distributions concave in the Bernoulli parameter
θ?

However, sometimes you are interested in a class of distributions for which a
uniform distribution isn’t possible (e.g. the real line).
For an fixed variance, the Gaussian is the distribution with the largest entropy.
And conversely, for any fixed entropy, the Gaussian is the distribution with
the smallest variance! (A similar statement holds for all of these exponential
max-ent distributions!) THIS FOLLOWS from the statement that

H(X) ≤ 1

2
log 2πeV(X)

with equality iff X is Gaussian.

17. Let X and Y be marginally Normal (but not necessarily jointly Normal)
random variables with correlation ρX,Y . Use the result of Exercise (CITE)
to find a tight lower bound on the mutual information I(X,Y ) in terms
of ρX,Y .

2.2 I-divergence projections

I-projections and rI-projections!!!
More topics for this section:
I think Stirling’s formula belongs in here somewhere as an exercise.

Solution

1. Let Pθ be the Bernoulli(θ) distribution. It only takes two possible values,
so the expectation is easy to evaluate.

H(Pθ) = E log
1

pθ(X)

= P(X = 1) log
1

pθ(1)
+ P(X = 0) log

1

pθ(0)

= θ log
1

θ
+ (1− θ) log

1

1− θ

2. The entropy is the log of the geometric expectation of one over the density.

h(X) = E log
1

p(X)

= log eE log(1/p(X))

= log Ẽ
1

p(X)

3. Because the Xj take values on disjoint supports, knowledge of X tells you
exactly what value θ must have.

H(X) = H(X, θ)−H(θ|X)︸ ︷︷ ︸
zero

= H(X, θ)

= H(θ) +H(X|θ)

= H(θ) +
∑
j

pjH(Xj)

To make the second term infinite, we need the H(Xj) to grow quickly
enough and the pj to diminish slowly enough. There are plenty of choices.
One simple example is to let each Xj be uniformly distributed over a set
of size 2j , so that its entropy is j, while letting the pj be proportional
to 1/j2. Then the sum comprises terms proportional to 1/j, which is a
divergent series.

4. Entropy is bounded by all cross entropies. So for the probability density
q := e−f/µ e−f ,

h(P ) ≤ E log
1

q(X)

= E log
1

e−f(X)/µ e−f

= Ef(X) + log µ e−f (6)

This might enable you to bound entropy in terms of more familiar
or easier to compute quantities. Conversely, you could also use this
inequality to lower bound the expectations of various functions in terms
of the entropy.

As an example, consider f(x) := (x−µ)2

2σ2 where µ and σ2 are the mean and
variance for P . The first term is

Ef(X) = E
(X − µ)2

2σ2

=
1

2σ2
E(X − µ)2︸ ︷︷ ︸

σ2

=
1

2

If we’re dealing with differential entropy, then the other term is a Lebesgue
integral:

logµ e−f = log

∫
e−

(x−µ)2

2σ2 dx

= log
√

2πσ

In fact, this particular sum 1
2 + 1

2 log 2πσ2 is exactly the Gaussian entropy.
You’ll see in section (REFERENCE) another explanation for why any
continuous random variable has to have its entropy bounded by this
function of its variance.

The inequality (6) can also be used to check that entropy is finite: look
for an f such that both terms are finite. When exactly is µ e−f finite?
For the countable case, we can have f(n) = − log sn for any convergent
series:

∑
sn < ∞. Likewise, for the continuous case, f(x) = − log s(x)

works if s is Lebesgue integrable.

5. In the derivation below, the expectation refers to the joint distribution
PX,Y .

I(X;Y ) := h(Y )− h(Y |X)

= E log
1

p(Y )
− E log

1

p(Y |X)

= E log
p(Y |X)

p(Y )

= E log
p(X)p(Y |X)

p(X)p(Y )

= E log
p(X,Y )

p(X)p(Y )

= D(PX,Y ‖PXPY )

6. The following clever and elegant proof is from (CITE Cover and Thomas
Theorem 2.7.3).

Let θ be a random variable taking values 1 and 2 with probabilities λ
and 1 − λ. Consider the random distribution Pθ. Unconditionally, it is
the mixture λP1 + (1 − λ)P2. We simply need to invoke the fact that
conditional entropies are smaller than entropies.

h(λP1 + (1− λ)P2) = h(Pθ)

≥ h(Pθ|θ)
= λh(P1) + (1− λ)h(P2)

Because Pθ depends on θ, the inequality is actually strict.

7. This derivation is straight-forward if you start with (CITE Exercise num-
ber that gives the mutual info as a relative entropy).

I(X;Y ) = D(PX,Y ‖PXPY )

= E log
p(X,Y )

p(X)p(Y )

= E log
p(X)p(Y |X)

p(X)p(Y )

= E log
p(Y |X)

p(Y )

= EXEY |X log
p(Y |X)

p(Y )

= EXD(PY |X‖PY )

8. WHAT about the condition that the set of definition should be closed?
IS that satisfied here?

We need to verify that φ is strictly convex on the set of finite signed
measures. The second term of φ is linear:

µ (αp+ βq) = αµp+ βµ q

So we need the first term (−h) to be strictly convex (i.e. h to be strictly
concave). Indeed, Exercise (NUMBER) showed that h is strictly concave
for probability measures. CAN WE EXTEND THAT REASONING TO
ALL FINITE SIGNED MEASURES?

I STILL NEED TO FIGURE OUT and explain WHY ∇φ(Q) = log q.
MAYBE I SHOULD JUST TELL THE READER TO ACCEPT that
gradient, and point the interested reader to a paper that [I think] covers
the derivation: (I should read that paper anyway - Functional Bregman
Divergence and Bayesian Estimation of Distributions)

dφ(P,Q) = φ(P )− φ(Q)− 〈∇φ(Q), p− q〉
= (µ p log p− µ p)− (µ q log q − µ q)− 〈log q, p− q〉
= µ p log p− µ q log q − µ p log q + µ q log q − µ p+ µ q

= µ p log
p

q
− µ p+ µ q

9. COPY and paste this proof from Overleaf document. Maybe change the
notation or simplify it.

Let’s abstract this reasoning into a pattern for identifying bv-
decompositions. (SIDENOTE: I don’t actually know of any other di-
vergences (besides Bregman and reversed I-divergence) that have a bv-
decomposition. But if I was going to look, this is the pattern I would
use.) It is sufficient to express an expected divergence between a random
and a constant quantity as

Ed(X, a) = d0(c, a) + Er(X) (7)

where d0 is any divergence. If d0 is not the same divergence as a, then
this is not as “pure” of a bv-decomposition, but the term can still be
interpreted as bias2. By plugging c in for a, we find that the remaining
term Er(X) must be exactly Ed(X, c) which we can interpret as a variance.
Why are we happy to consider this c a “center” for X? Because its the
minimizer of Ed(X, a) (i.e. a centroid). Why? Because the second term
of (7) doesn’t depend on a, all we can do is minimize the first term; it
attains its minimum value of zero when c is the input.

10. Because I-divergence is a Bregman divergence in its first argument, it has a
bv-decomposition (REFER to section or Exercise). Exercise (NUMBER)
showed that it also has a bv-decomposition in its second argument. Do
the integrations in either order (justified by Tonelli’s theorem), and do the
two bv-decompositions in turn.

ED(Pθ‖Qα) = EθEαD(Pθ‖Qα)

= Eθ[EαD(Q̃α‖Qα) +D(Pθ‖Q̃α)]

= ED(Q̃α‖Qα) + ED(Pθ‖P̄θ) +D(P̄θ‖Q̃α)

11. Assume R1 and R2 both have Q as their I-projection. Consider the relative
entropy to a log mixture from any P ∈ S.

D(P‖R1e
λ log r2/r1) = EP log

p(X)

r1−λ
1 (X)rλ2 (X)/Aλ(R2‖R1)

= EP log
p1−λ(X)pλ(X)

r1−λ
1 (X)rλ2 (X)

+ log
1

Aλ(R2‖R1)

= (1− λ)D(P‖R1) + λD(P‖R2) + log
1

Aλ(R2‖R1)

Only the first two terms depend on P , and in both cases, Q is the
minimizing choice. Thus Q is the I-projection of all of the log mixtures
between R1 and R2.

One interesting implication of this fact is that if R has Q as its I-
projection, then all of the distributions along the log-mixture path from
R to Q also have Q as their I-projection. This follows from our result
because trivially Q is its own I-projection.

REVERSE I-projection seems to travel along mixture lines while I-
projection seems to travel ALONG LOG-MIXTURE CURVES. THINK
ABOUT THIS and WRITE about it.

12. A rearrangement of the first Pythagorean inequality from Theorem 2.1 is

D(P‖Q)−D(S‖Q) ≥ D(P‖QS)

Assume D(Pn‖Q) → D(S‖Q). Then with Pn as P , the left-hand side of
the inequality goes to zero, so the right-hand side must as well, showing
that (Pn) I-converges to QS .

A rearrangement of the second Pythagorean inequality from Theorem 2.1
is

D(Q‖P )−D(Q‖S) ≥ D(QS‖P )

Assume D(Q‖Pn) → D(Q‖S). Then with Pn as P , the left-hand side of
the inequality goes to zero, so the right-hand side must as well, showing
that (Pn) rI-converges to QS .

13. We’ll expand the relative entropy

D(PX‖PU ) = E log
pX(X)

pU (X)

= E log
1

pU (X)
− E log

1

pX(X)

= E log
1

pU (U)
− E log

1

pX(X)

= h(U)− h(X)

The tricky step requires realizing that pU (X) = pU (U) because pU is
constant on their shared support X .

14. A Bernoulli random variable can only take two values. We’ve seen from
Exercise (CITE) that uniform distributions maximize entropy, so the
Bernoulli(1/2) must be the entropy-maximizer. More specifically,

H(Pθ) = H(P1/2)−D(Pθ‖P1/2)

= 1 bit −D(Pθ‖P1/2)

15. We’ve already seen in Exercise (Number) that entropy is concave on the
set of all probability measures on a given measurable space. Taking convex
combinations of θ is equivalent to taking the corresponding convex mixture
of Bernoulli distributions:

Bernoulli(λθ1 + [1− λ]θ2) ≡ λBernoulli(θ1) + [1− λ]Bernoulli(θ2)

So the entropy is concave in θ:

H(Bernoulli(λθ1 + [1− λ]θ2)) = H(λBernoulli(θ1) + [1− λ]Bernoulli(θ2))

> λH(Bernoulli(θ1)) + [1− λ]H(Bernoulli(θ2))

16. Letting P be the d-dimensional Normal distribution with mean vector µ
and [non-degenerate] covariance matrix Σ,

h(P ) = E log
1

p(X)

= E log
[
(2π)d/2|Σ|1/2e 1

2 (X−µ)′Σ−1(X−µ)
]

=
d

2
log(2π) +

1

2
log |Σ|+ 1

2
E(X − µ)′Σ−1(X − µ)

Notice that each X is transformed into a standard Normal random vector
Z:

E(X − µ)′Σ−1(X − µ) = E[Σ−1/2(X − µ)]′[Σ−1/2(X − µ)]

= EZ ′Z

= E
d∑
i=1

Z2
i

=

d∑
i=1

EZ2
i

= d

Thus the overall entropy is d
2 [1 + log(2π)] + 1

2 log |Σ|.

Remark: It is interesting to note that E(X−µ)′Σ−1(X−µ) is equal to d
even when X isn’t Normal, as long as it has mean µ and covariance Σ. To
see this, use the fact that the trace is invariant under cyclic permutation
and that expectation commutes with trace.

E(X − µ)′Σ−1(X − µ) = Etr (X − µ)′Σ−1(X − µ)

= Etr Σ−1(X − µ)(X − µ)′

= tr Σ−1E(X − µ)(X − µ)′

= tr Σ−1Σ

= tr Id

= d

Now, let X and Y be bivariate Normal random variables.

I(X,Y ) = h(X) + h(Y )− h(X,Y )

=
1

2
[1 + log(2π)] +

1

2
log σ2

X +
1

2
[1 + log(2π)] +

1

2
log σ2

Y

−
(

2

2
[1 + log(2π)] +

1

2
log(σ2

Xσ
2
Y − σ2

X,Y )

)
=

1

2
log

σ2
Xσ

2
Y

σ2
Xσ

2
Y − σ2

X,Y

= −1

2
log

σ2
Xσ

2
Y − σ2

X,Y

σ2
Xσ

2
Y

= −1

2
log[1− ρ2

X,Y ]

where ρX,Y is the correlation σX,Y /(σXσY ). As we might expect,
mutual information is a monotonically increasing function of the squared
correlation.

CITE the blog linked below.

17. First, observe that for any specified means and covariance matrix, the
entropy-maximizing distribution is the multivariate Normal distribution.
(THIS SHOULD BE AN EASY[?] CONSEQUENCE of the general result
in the text above. BUT POINT it out explicitly. ACTUALLY it may not
be so easy. It might involve rescaling uncorrelated RVs. OR DOES that
log determinant formula only work for multivariate normal?)

Let X ′ and Y ′ have the same marginal distributions of X and Y , but
assume they are jointly Normal and have correlation ρX′,Y ′ = ρX,Y .

Because X ′ has the same marginal distribution as X, they must have the
same entropy. Likewise for Y ′ and Y . And because the multivariate Nor-
mal distribution (X ′, Y ′) maximizes entropy over the class of distributions
whose means and covariances are the same as those of (X,Y ), we know
that h(X ′, Y ′) ≥ h(X,Y ). Thus

I(X,Y ) = h(X) + h(Y )− h(X,Y )

≥ h(X ′) + h(Y ′)− h(X ′, Y ′)

= I(X ′, Y ′)

= −1

2
log[1− ρ2

X′,Y ′ ]

= −1

2
log[1− ρ2

X,Y ]

A lower bound is “tight” if no greater lower bound is possible. Because
jointly Normal (X,Y ) achieves the bound, we know it can’t be improved.

It’s perfectly intuitive that for fixed marginal entropies, maximizing the
joint entropy is equivalent to minimizing the mutual information.

CITE the blog AGAIN!
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