
MOVE MORE STUFF HERE FROM THE DIVERGENCE SPACES DOCU-
MENT
OR MAYBE i want to dedicate the next section to only the total variation - and
move everything else to the following section - “total variation norm” - “other
divergences for measures”

0.1 Supremum metrics

Consider a set of functions with domain X . We will say that a subset S of
the domain separates functions if x = y ⇔ [x(a) = y(a)∀a ∈ S]. That is, if
any two functions agree on S, then they must agree everywhere. Recall, for
instance, that if two measures agree on a generating class, then they agree on
the measure that they assign to all sets (i.e. they are the same measure). So
any generating class separates measures.

Let x and y be real-valued functions with the same domain, and assume that
they are bounded on a subset S that separates functions. d is called a supremum
metric if it is defined by

d(x, y) := sup
a∈S
|x(a)− y(a)|

1. We’ve already established in section (CITE) that such a d will satisfy the
metric properties when the supremum is taken over all of X . Show that
if S separates functions, we still get the property d(x, y) = 0⇒ x = y.

0.1.1 Total variation distance

There are a number of important supremum metrics on the set of probability
measures. (SIDENOTE: In the context of probability measures, S is often called
the set of test functions. Recall that sets can be identified with their indicator
functions.) The total variation distance (in addition to being an f -divergence!)
is the supremum metric that uses the set of all measurable sets as its test
functions.

dTV(P,Q) = sup
A∈B
|PA−QA| (1)

(SIDENOTE: Some authors define total variation distance to be the supremum
over all possible partitions of the sample space of

∑
|PAi−QAi| summing over

all Ai in the partition. This definition is nicer if you want to extend the distance
to the vector space of all finite signed measures. In the case of probability mea-
sures, it’s simply equal to two times our definition, as the maximizing partition
splits the space into two pieces: {p < q} and {p ≥ q} which contribute equally.)
dTV(P,Q) is an upper bound for the difference in the probabilities that P and Q
assign to any event. This formulation makes it clear that dTV separates points.

2. Explain why d2TV ≤ dTV.

3. Show that the two formulations (??) and (3) of dTV coincide.

The Kolmogorov distance dK is also an important supremum metric on prob-
ability distributions on (R,B) by the test functions S := {(−∞, t] : t ∈ R}.
Recall that this S is a generating set for B, so it distinguishes measures (CITE
SECTION). For probability measures P and Q, we can express dK in terms of
the cdfs FP and FQ.

dK(P,Q) := sup
t∈R
|P (−∞, t]−Q(−∞, t]|

= sup
t∈R
|FP (t)− FQ(t)|

Two other notable supremum metrics on distributions on (R,B) are Wasser-
stein distance (with test functions Lip(1)) and bounded Wasserstein distance
(with test functions Lip(1) ∩ Bdd(1)). (MAKE SURE I’ve defined Lipschitz
functions somewhere! And that i’ve introduced the notation Bdd(a) for the set
of functions bounded in absolute value by a.... ARE all the functions in Lip(1)
measurable? OR do I need to specify the measurable subset of this?)

HOW do I know that Lip(1)∩B(1) is “big enough” to separate the finite signed
measures?? Figure this out. Then maybe make it an Exercise.

1 Hellinger distance

OUT OF PLACE

4. Show that Hellinger distance

H(P,Q) :=
√

2[1−A(P,Q)]

is equal to the L2 norm distance between the square root densities
√
p and√

q.

5. Use the identity (DOES THIS require non-negative a, b, or does it work
fine for all of R by using complex roots?)

|a− b| = |
√
a−
√
b||
√
a+
√
b|

to prove that dTV(P,Q) ≤ H(P,Q). Then prove that

A(P,Q) ≤
√

1− d2TV(P,Q)

Squared Hellinger distance can be upper bounded by 2dTV.

H2(P,Q) = µ (
√
p−√q)2

≤ µ [p+ q − (p ∧ q)
= µ |p− q|
= 2dTV(P,Q)

(CITE RAMAMOORTHI Prop 1.2.1) Together with the inequality dTV(P,Q) ≤
H(P,Q) from Exercise (NUMBER), this tells us that convergence in Hellinger
distance is equivalent to convergence in total variation distance. It also shows
(along with Exercise (NUMBER)) that Hellinger affinity is squeezed between
two functions of dTV.

A(P,Q) ≥ 1− dTV

POINT out that it is a true metric, unlike many of the divergence that we’ve
studied. SQUARED Hellinger distance is an f -divergence - not Hellinger dis-
tance itself (OF COURSE, because dTV is the only f -divergence that is also a
metric!)
Emphasize the aspects related to inner product.
NOT AN INNER PRODUCT SPACE for probability measures, because that’s
not a vector space! What about for the set of all finite signed measures that are
absolutely continuous with respect to the defining reference measure?
According to wikipedia, there is another f function for which squared Hellinger
distance is an f -divergence. It is f(t) = (

√
t − 1)2. Can I verify this? Make it

an exercise? Does something like that extend to the general squared λ-Hellinger
divergences, or is this a special case?

Solution

1. If the supremum is zero, then |x(a)− y(a)| must be zero for all a. By the
assumption that S separates functions, this tells us that x and y must be
equal.

2. Formulation (3) and its accompanying interpretation tells us that dTV

must be in [0, 1]. So its squared value can be no larger.

3. We’ll start by considering ().

dTV(P,Q) = sup
A∈B
|PA−QA|

= sup
A∈B
|µ pA− µ qA|

= sup
A∈B
|µ (p− q)A|

Clearly the supremum of this quantity will correspond to A being either
{q < p} or {p < q}; otherwise there would be positive and negative parts of
the integral fighting against each other. In fact, if PΩ = QΩ (for instance,
if P and Q are probability distributions), these sets give the same result:

|µ (p− q){q < p}| = µ (p− q){q < p} non-negative integrand

= µ (p− q)[1− {p ≤ q}
= µ (p− q)[1− {p < q}
= PΩ−QΩ︸ ︷︷ ︸

0

+µ (q − p){p < q}

= µ |p− q|{p < q}
= |µ (p− q){p < q}|

So dTV(P,Q) = |µ (p− q){q < p}| = |µ (p− q){p < q}|.

Now let’s expand the other end (??), and see if we can make the strands
meet.

1

2
µ |p− q| = 1

2
[µ |p− q|{q < p}+ µ |p− q|{p ≤ q}]

=
1

2
[µ |p− q|{q < p}+ µ |p− q|{p < q}]

=
1

2
[|µ (p− q){q < p}|+ |µ (p− q){p < q}|]

This is an average of two quantities that are equal to each other, so it is
equal to both of them. And our derivation above shows that each of them
is equal to dTV(P,Q)

4. Notice that the Hellinger affinity A(P,Q) := µ
√
p
√
q is the L2 inner prod-

uct between the square root densities. We’ll begin at the end, by simpli-
fying ‖√p−√q‖2 and find that it takes us right to H2(P,Q).

‖√p−√q‖2 = µ (
√
p−√q)2

= µ [p+ q − 2
√
p
√
q]

= 2− 2A(P,Q)

= 2(1−A(P,Q))

= H2(P,Q)

Taking the square root on both sides gives the desired result.

5. The identity in the problem statement is a hint to start with the half-
L1 distance formulation of dTV then use Cauchy-Schwarz and invoke the
result from Exercise (NUMBER).

dTV(P,Q) =
1

2
µ |p− q|

=
1

2
µ |√p−√q||√p+

√
q|

≤ 1

2
‖√p−√q‖︸ ︷︷ ︸

H(P,Q)

‖√p+
√
q‖

= H(P,Q)
1

2
[µ (p+ q + 2

√
p
√
q)]1/2

= H(P,Q)
1

2

√
2[1 +A(P,Q)]

≤ H(P,Q)

The last inequality used the fact that Hellinger affinities are bounded by 1.

In the above derivation, if we had substituted the definition of Hellinger
distance before the final inequality, we would have gotten

dTV(P,Q) ≤ H(P,Q)
1

2

√
2[1 +A(P,Q)]

=
1

2

√
2[1−A(P,Q)]

√
2[1 +A(P,Q)]

=
√

1−A2(P,Q)

⇒ A(P,Q) ≤
√

1− d2TV(P,Q)

CITE RAMAMOORTHI Prop 1.2.1 and Corollary 1.2.1
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