Spaces of measurable functions

We saw in Exercise REF that the set of strongly measurable functions and
the set of Borel measurable functions are both vector spaces. We also saw
that the LY (1)-norms define semi-normed spaces of strongly measurable func-
tions (Exercise REF) and that the set of Bochner integrable functions is exactly
the semi-normed space Li (u) (Theorem REF). In this chapter, we explore L&-
spaces more deeply and introduce another important notion of convergence for
measurable functions.

1 ILg-spaces

Let us review Section REF. Given a measure space (€2, 3, 1) and a Banach space
X, the set of all strongly measurable functions mapping from Q to X (with
respect to ¥ and the Borel o-algebra of X) comprises a vector space Mx (£, 2).
For p € [1,00), we defined the L (€2, ¥, )-norm on these functions by

1£1lp = (MILFIP)P.

(SIDENOTE: Based on the limiting behavior of this norm, the p = oo case
is defined to be the essential supremum of ||f||.) L%(Q, %, u) is the Banach
space (Theorem REF) of equivalence classes of strongly measurable functions
with finite LE-norm, and L% (£, 3, u) is the semi-normed space of the functions
themselves. When the subscript is omitted, the codomain is implied to be R.

As we point out below, it turns out that almost all of the examples of normed
spaces that we’ve seen so far are special cases of L% spaces for some measure
space. Thus establishing general properties of LY spaces gets us a lot of mileage.

1.1 Examples

IS THIS A GOOD place to put the discussion of sequences as functions?

Revisit examples from metric space section? IT TURNS out that almost
all important normed spaces seem to be special cases of LP - DON’T BOTHER
proving anything redundant about those spaces! e.g. in the sections introducing
them, don’t even bother showing that they satisfy norm properties - all we need
is for (R,]|-|) to be a normed space - the rest follows from establishing that L?
spaces are normed spaces! (except some general results, e.g. supremum norm is
norm, are useful beyond just the LP cases - in fact, that is (essentially) the L*>°
case so I can just refer to it in part, when claiming that L? spaces are normed
spaces.

ALSO some non-examples maybe?
The space Cla, b] of continuous functions on the real interval [a, b] with norm

x| := max |z(t

ol += ma fa(0)
(SIDENOTE: REFERENCE the relevant theorem about continuous mappings
from compact domains to remind the reader why the max exists. OR DID I
just do that in the metric spaces section?)

I think C[a, b] turns out to be a linear subspace of L () where p is Lebesgue
measure on [a,b] and zero elsewhere. (SIDENOTE: Any measure with positive
density on [a, b] and zero elsewhere results in this same L space.)

Are all supremum metrics also norms?

DISTINGUISH the isomorphism between vector spaces (and thus normed
spaces) from the isomorphism between Hilbert spaces. All Hilbert spaces of the
same cardinality have an isomorphic mapping that preserves all inner product
values (and thus norms). On the other hand, all vector spaces with the same
cardinality are isomorphic (right?) but different norms on those vector spaces
don’t necessarily have an isometric isomorphism. (right?)

1.2 Properties

Holder’s inequality - does it still hold in this generality? YES i think so - two
possible routes to prove it - Jensen’s inequality method or Young’s inequality
method. START with the general statement for the product of a sequence of
functions - then point out that the case of two factors and conjugate exponents
is the most common statement - compare to Cauchy-Schwarz when using p =
q=2.

Dense subspaces

REMIND reader that the simple functions are dense

When  is R? and X is R, there are some other important dense subsets: -
continuous functions with compact domains - the step functions

In considering the separability of L%-spaces, we will restrict our attention
to real-valued functions on o-finite measure spaces. In that case, the answer is
straight-forward.

Theorem 1.1. Let (Q, A, ) be a o-finite measure space, and let p € [1,00).
LP(Q, A, 1) is separable iff the Frechét-Nikodym metric space is separable.

An interesting consequence of this theorem is that if any one of these LP
spaces are separable, then they are all separable.

1.1 Prove Theorem 1.1.

1.2 Are the [P-spaces separable?

1.3 Dual spaces

{ Theorem 1.2 (Cengiz, 1992, Corollary 1). Let p € (1,00], and let q be its
conjugate exponent. Suppose (Q, A, u) is a measure space and X is a Banach
space with a separable dual. Given any g € L%, (Q, A, ), the mapping

[ ug(f)

is a continuous linear functional on LY (Q, A, 1).

EXERCISE: Show that Theorem 1.2 also works for p = 1 if we add the
condition that (€, A, ) is localizable.

{ Theorem 1.3 (Cengiz, 1992, Corollary 1). Letp € [1,00), and let q be its con-
Jugate exponent. Suppose (2, A, 1) is a measure space and X is a Banach space
with a separable dual. Then every continuous linear functional on LY (2, A, p)
must have the form

J=pg(f)

for some g € LL, (Q, A, ).

Theorems 1.2 and 1.3 together (along with Exercise REF) allow us the char-
acterize the dual spaces under very general conditions.

Corollary 1.4. Let p € (1,00), and let q be its conjugate exponent. Suppose
(2, A, 1) is a measure space and X is a Banach space with a separable dual. The
dual space of LY (Q, A, p) is isomorphic to L%, (2, A, ). The conclusion holds
for p=1 as well if p is localizable.

We note that under the conditions of Corollary 1.4, LY (€, A, i) is reflexive,
i.e. the dual space of the dual space is the original space.

What about when p = oo? If the codomain X is the reals, and p is o-finite,
its dual space is isometric to the Banach space of finite charges ba(Q2, A, u).

2 Convergence in image measure

THE finite signed measures comprise the dual space of the bounded continuous
functions (on a compact domain). The weak topology on the bounded continu-
ous functions is the coarsest topology for which all of the finite signed measures
are continuous as linear functionals. The weak-* topology on M is the coarsest
topology for which the point-evaluation functionals are all continuous.

If V is reflexive, then the point-evaluation functionals make up the entirety
of the dual space of X'; in that case, all continuous linear functionals are (still)
continuous with respect to the weak-* topology.

NEED TO INTRODUCE weak-* convergence of measures here - don’t go
into much detail, that should happen in the next chapter (including Levy-
Prokhorov metric) - just define it here - then any facts about convergence
in distribution that rely on more detail can be discussed (probably as exer-
cises/solutions) in the next chapter.

Even if the sequence a functions aren’t converging to the same function,
their image measures may still be approaching some limiting distribution. In
fact, the sequence of measurable functions don’t even have to be defined on the
same measure space for us to ask about the limiting behavior of their image
measures; they just need to share a common codomain.

When the underlying space is a probability space, this is called convergence
in distribution.

NEED TO cover the concept of CDF

2.1 Cumulative distribution functions

Define cdf. SPECIFIC to random variables. (Multivariate cdf? MAKE this a
sidenote.)

1. Let F be a cdf of X. Show that F' is right-continuous. That is, show that
% | x implies F(x,) — F(z). What if the sequence is instead increasing
to x?

Example cdfs - continuous, discrete.
Relationship between density and cdf.

THE INVERSE CDF TRANSFORM - THIS SHOULD BE AN EXERCISE
rather than a section!

THE TEXT below was copied and pasted from one of my notecards - it
needs to be revised until suitable for the book. e.g. MAKE some parts into
exercises. AND MAKE it fit into the flow of this document.

HIGHLIGHT HOW central this is! One interesting implication: A uniform
random variable is a good enough “source of randomness” to generate a draw
from any distrn you want! (In fact, infinitely many draws.)

Let G(t) be a cdf. This simply means that G is right continuous, monotone
increasing, and has limits 0 and 1 as ¢ goes to negative and positive infinity.
(Any such function gives a probability distribution.) Define the inverse cdf
transform by

G~ Y(p) := inf{t : G(t) > p}

(YOU CAN almost replace inf by min because of the right-continuity, I think.
But you might want to worry about U = 0.) If U ~ U[0,1], then G~1(U) has
G as its distribution function. This is easy to see, starting with the definition
of the distribution function of the random variable G=1(U):

P{G HU) <t} =P{U < G(t)}
=G(t)

Sketch a plot of a cdf to see that G™1(U) < t is equivalent to U < G(t).
The only places that might cause you concern are the flat regions and the
discontinuity points.

A closely-related fact is that the cdf transform of any continuous random
variable is standard uniformly distributed. That is, let X have cdf F. Then
F(X)~UJ0,1].

P{F(X) <t} = P{X < F~'(1)}
— F(F\(1)
=t

(Because X is continuous, we know that F' has a true inverse on the support of
X.) With the inverse cdf transformation, we saw that we could get discreteness
(if needed) from a draw from a continuous random variable. But in the cdf
transformation, it’s not possible to get something continuous from a random
variable that has any point masses.

One can compose these two types of transformations in order to turn a
draw from one distribution into a draw from another, via a standard uniform
intermediary. If X is a continuous RV with cdf F' and Y has cdf G, then
G~1(F(X)) has the same distribution as Y.

ANOTHER EXERCISE:

POINT out that the “average value of a function” formula from calculus is
exactly an expectation using the uniform distribution. ALONG THE SAME
LINES, the mean value theorem is just the observation that the average is
between the inf and sup (strictly between if they aren’t achieved - make sure to
point this out in the section below!), and that by continuity every value between
them is achieved. IS THERE A MORE GENERAL WAY OF STATING THE
MEAN VALUE THEOREM?

If f is continuous on [a,b] and differentiable on (a,b), then there exists a
¢ € (a,b) such that

f(0) = f(a)

o=

THE RIGHT HAND side is exactly the average value of f' Ef'(X) for X ~
Uniffa, b]. We know it’s between the infimum and supremum of f’ on [a, b]. IF
/' is continuous, then it takes all of those values, so there exists a satisfactory
¢ € (a,b). - need to be more careful about open and closed intervals here

THIS IS TRUE FOR ANY distribution of X - the uniform is only one
particular case - but useful because we get to relate it to the antiderivative via
the Fundamental Theorem of Calc.

SO the ordinary derivative is the “Lebesguela,b] density” of the function
somehow... THINK ABOUT THIS CAREFULLY

IS THERE a useful more general statement that allows for densities when
X has a different distribution?

A useful re-expression of MVT:

Let (X,) be a sequence of random variables with cdfs (F,), and let X have

cdf F. We say that (X,,) converges in distribution to X (written X, 4 x )
if F,, — F at every point where F' is continuous. (SIDENOTE: Sometimes
people say “convergence in law” instead; this comes from “probability law”
which is an old-fashioned term for probability distribution.) (If X ~ P, then

we may also represent this convergence by X, 4 P.) You'll see a general-
ization of this convergence in section REF. (WEAK CONVERGENCE for
metric spaces - cover this in the section where weak [and weak-*] convergence
are defined. INCLUDE generalizations of some of the observations made below.)

Any sequence of random variables that converges in probability also con-
verges in distribution.

Theorem 2.1. If X, — X, then X, % X.

Another connection between convergence in distribution and our previous
notions of convergence is supplied by the following remarkable result.

Theorem 2.2 (Skorokhod’s Representation Theorem). If X, LA X, then one
can construct Y1,Ya, ... and Y with matching distributions (i.e. each Y; 4 X;
and Y < X ) such that Y, “3 Y.

(SIDENOTE: The notation Y 2 X means that Y and X have the same
distribution.)

2. Use inverse cdf transformation to prove Skorokhod’s Representation The-
orem.

One implication of this result is for interchanging limits and expectations.
If the corresponding Y7,Ys, . .. are dominated [INSTEAD SAY “uniformly inte-
grable” if T introduced that concept in the previous document] (or monotonically
increasing and non-negative), then

ImEX, =limEY, =ElimY, =EY =EX (1)

We’ve seen the Continuous Mapping Theorem for almost sure convergence
and convergence in measure (Theorem ??). A third part of the theorem extends
the same result to convergence in distribution. (SIDENOTE: As before, this re-
sult is stated a bit over-ambitiously. For now, just think of (X,,) as a sequence of
random variables. A more general definition of convergence in distribution that
works for random elements in general will be introduced in CITE SECTION.)

Theorem 2.3 (Continuous Mapping Theorem (for convergence in distribu-
tion)). If g is a continuous function from one metric space to another and X,
be a sequence of random elements, then

X, %X implies 9(X5) 4 9(X)

(SIDENOTE: As with the previous part of the Continuous Mapping Theo-
rem, it is sufficient to require that the probability that X takes a value at which
g is discontinuous has probability zero.)

3. Let X, 4 X and let g be a bounded continuous function. Explain why

lim Eg(X,,) = Eg(X)

Exercise CITE is related to a more general way of defining convergence in
distribution; WE’LL COME BACK TO THIS IN cite the relevant functional
analysis section.

There is also an analog to Theorem ?7? for convergence in distribution, but
it requires one of the sequences to be converging to a constant.

Theorem 2.4 (Slutsky’s Theorem). Let (X,,) and (Y;,) be sequences of random
elements with metric space codomains A and B. Let g be a continuous function
from A X B to another metric space. Let ¢ be a constant element of B. Then

X, 4 XY, 5 ¢ implies 9(Xn,Yn) Lyee c)

(SIDENOTE: As you’ve come to expect, g is allowed to be discontinuous
with probability zero.)

Most statements of Slutsky’s Theorem state the condition that Y,, conver
in probability to ¢ rather than in distribution. It turns out that convergence
in distribution to a constant implies converge in probability, in a sense. The
Y,, may be defined on different probability space, but each probability space
has its own constant ¢ function. The sequence of sets where |Y;,—c| > € has
probability going to zero.

If, for instance, the X,, and Y,, have the same vector space codomain, the:
X, +Y,, converges [in distribution] to X +¢, because addition is a continuous
function. Similarly, if a continuous multiplication operation is defined, then
X, Y, converges to Xc. (SIDENOTE: But for instance, if ¥;, is a sequence of

scalars, X,,/Y, N X/c requires ¢ # 0.)

DO PART of portmanteau theorem HERE?

One corollary of Theorem 2.2 is that bounded convergence carries over to

convergence in distribution. That is, let X, 4 X with |Xi| < M foralld. Tt
there exists a sequence {Y,,} with |Y;| < M almost surely and

X, Ly, Sy Ly
So
limEX, = limEY, = ElimY, = EY = EX

Because convergence in probability implies convergence in distribution, we
see that this result also tells us that bounded convergence also works for
convergence in probability. (DOES dominated convergence work in general {
convergence in probability?)

This corollary immediately tells us that if X, 4 X and g is any bounded
continuous function, then limEg(X,,) = Eg(X). Actually, this is one way of
characterizing convergence in distribution. EXPLAIN.

How do we know that X, % X implies g(X,,) A g(X) for bounded contix
uous g? SHOW THE details.

We’ve seen that convergence in distribution means converge of cdfs at
continuity points, but there’s no end to the ways in which probability measur
can be compared or said to converge. We'll survey a number of these other
ways of quantifying the “difference” between distributions in section REF. (I
KOLMOGOROV distance just the right thing for capturing convergence in
distribution? Or is it stronger since it’s uniform convergence? AND I DONt
think it’s excluding discontinuity points, so that may be another difference.)
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