
Product Spaces

In Section REF, we saw a simple way to put measures together (eq:product-
measure) to create a product measure on a product space. Here we will see
another way to construct a measure on a product space from measures on the
individual measure spaces. Essential to this discussion is the idea that an inte-
gral with respect to a measure on a product space can often be found by using
an iterative integration procedure. We will also take another look at marginal
measures. Finally, we will see that it is often advantageous to “rearrange” an
ordinary measure space into a product space.

1 Constructing a measure on a product space

Let (X,A) and (Y,B) be measurable spaces. The ideas in this section extend to
any finite number of measurable spaces in a straight-forward way. Extension to
countably many is more subtle and is discussed (REF a section further down).
Suppose Φ := {Φx : x ∈ X} is a family of measures on (Y,B). We say that Φ
is a kernel from (X,A) to (Y,B) if for every B ∈ B, the mapping x 7→ ΦxB is
A-measurable.

A kernel is called σ-finite if (DEFINE - make it intuitive if possible - see
Pollard section 4.3 for definition).

1.1 True or false: if every measure in a kernel is a σ-finite measure, then
that kernel is a σ-finite kernel.

1.2 Give an example of a σ-finite kernel whose measures are not σ-finite.

ETheorem 1.1 (see Pollard, 2002, Theorems 4.20, 4.22). Let µ be a measure
on (X,A) and Φ be a σ-finite kernel from (X,A) to (Y,B). Given any f ∈
M+(A⊗ B),

(i) x 7→
∫
Y f(x, y)dΦx(y) is A-measurable,

(ii) the repeated integral
∫
X
∫
Y f(x, y)dΦx(y)dµ(x) =: (µ⊗Φ)f defines a mea-

sure on (X× Y,A⊗ B).

1.3 Suppose a measure µ on (X1×X2,A1⊗A2) is the product of µ1 and µ2,
with µ2 σ-finite. What measurability property of f ∈ M+(A1 ⊗ A2)
follows from Theorem 1.1?

The ability to find (µ ⊗ Φ)-integrals by evaluating iterated integrals is ex-
traordinarily convenient. The next two theorems provide us with additional
conditions allowing the use of iterated integrals to find a product measure’s
integral (recall Section REF).

ETheorem 1.2 (Tonelli’s Theorem, Mukherjea, 1972, Theorem 1). Let
(X,A, µ) be σ-finite and (Y,B, γ) be semi-finite. If the product measure µ⊗ γ is
semi-finite on (X× Y,A⊗ B), then for any f ∈M+(A⊗ B),

(µ⊗ γ)f =

∫
X

∫
Y
f(x, y)dγ(y)dµ(x) =

∫
Y

∫
X
f(x, y)dµ(x)dγ(y).

ETheorem 1.3 (Fubini’s Theorem, see Mukherjea, 1972). Let (X,A, γ) and
(Y,B, µ) be measure spaces and f ∈M(A⊗ B). If (γ ⊗ µ)|f | <∞, then

(γ ⊗ µ)f =

∫
X

∫
Y

f(x, y)dµ(y)dγ(x) =

∫
Y

∫
X

f(x, y)dγ(x)dµ(y).

Suppose g ∈ M(A ⊗ B). In order to use Fubini’s Theorem, one needs to
check that g is integrable. Tonelli’s Theorem is a perfect tool for the job, as
it allows us to consider the repeated integrals of |g|, using whichever order we
want (as long as the measures meet the conditions of Tonelli).

1.4 Show that if µ and γ are both σ-finite, then µ⊗γ must also be σ-finite.

1.5 The product-measurability assumption for f in Tonelli and Fubini
is important. Devise an example in which the two orders of iterated
integrals are both well-defined and finite but disagree with each other.

It’s usually inconvenient to directly check a function for product measura-
bility, but there are various simple conditions that automatically imply it —
recall Section REF.

1.6 Let {φω : ω ∈ Ω} ⊆ C(M) be a family of continuous real-valued func-
tions defined on a compact metric space M. Assume µ is a measure
on (Ω,Σ) for which the mapping f : ω 7→ φω has µ ‖f‖C(M) <∞ and
that for every x ∈ M, ω 7→ φω(x) is Σ-measurable. Explain why the
point-wise integral ∫

Ω

φω(x)dµ(ω)

is the Bochner integral of f with respect to µ.

Tonelli and Fubini are often invoked to justify interchanges in the order of
integration, a marvelously useful trick.

1.7 Let X be a non-negative random variable. Prove that

ELX =

∫ ∞
0

P{X > t}dt.

2 Mixtures

Of special importance is the case in which the measure being “multiplied” with
a σ-finite kernel Φ is a probability measure P . In that context, we will let Φ̄P

denote the marginal measure of P ⊗Φ for (Y,B); we call Φ̄P the P -mixture over
Φ and call P the mixing measure.

1.8 Suppose that all of the measures in Φ assign the same measure to the
full space Y. Show that Φ̄P also assigns that same measure to Y.

Given a family Φ := {Φx : x ∈ X} of measures on (Y,B), one may not have
any particular σ-algebra “in mind” for X. We will use the notation σ(Φ) to
denote the coarsest σ-algebra for which Φ is a kernel from (X, σ(Φ)) to (Y,B).
This “coarsest” σ-algebra is well-defined because the power set works and the
intersection of σ-algebras is a σ-algebra. Any probability measure P on X whose
domain σ-algebra is at least as fine as σ(Φ) can be used to create a well-defined
mixture over Φ.

1.9 Let (Y,B, µ) be a measure space and {φx : x ∈ X} be a family of
functions in L1(µ). Assume (x, y) 7→ φx(y) is (A⊗B)-measurable for
some A. Show that if P is a probability measure on X with domain
at least as fine as A, and EX∼P ‖φX‖1 < ∞, then (x, y) 7→ φx(y) is
(P ⊗ µ)-integrable.

1.10 Suppose that a family Φ of finite measures on (Y,B) has densities
{φx : x ∈ X} with respect to a measure µ. if there exists a σ-finite
dominating measure µ, then densities with respect to µ exist by the
Radon-Nikodym Theorem. REF - except i don’t think they neces-
sarily have the product-measurability I need! Assume (x, y) 7→ φx(y)
is (A ⊗ B)-measurable for some A. Show that if P is a probability
measure on X with domain at least as fine as A, then Φ̄P has density

φ̄P (y) =

∫
X
φx(y)dP (x)

with respect to µ.

Additional discussion of integral transforms

3 Disintegration

Given a measure space (Ω,A, µ) and a measurable subset B, we define the
restricted measure µB by setting µBA := µ(A ∩B) for every A ∈ A.

1.11 Let {Bi} be a countable collection of measurable sets that partitions
Ω. Show that for any f ∈M+, µ f =

∑
i µBi

f .

The idea described in Exercise 1.11 can be thought of as introducing a
product space for which an iterated integral is the same as the original µ-integral
on (Ω,A). This product space comprises the index set of the {Bi} (with its
power set as σ-algebra) times the original (Ω,A). The original measure gets
“arranged” onto the product space in such that it’s restriction to Bi is exactly
the measure on “slice” i.

This process of splitting up a measure into components is a sort of “inverse”
operation to the creation of a mixture, with the additional desire that each
measure in the family should “live on” its own piece of some partitioning of the
original space Y. Based on this insight, let’s look to generalize the construction
from Exercise 1.11.

Continue coverage of disintegration and then conditional distributions and
conditional expectations.
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