
Probability measures and expectations

All of the measure theory we’ve developed so far must of course apply to
probability spaces. Here, we will build on that foundation by defining new
terms and deriving some specific results that are essential to probability theory.
You’ll should find your intuition about probability and randomness helpful for
the most part, but some results may be counter-intuitive. A probability space is
an excellent mathematical structure for modeling uncertainty or “randomness.”
As such it is a crucial topic to study if you hope to draw sound conclusions
about reality in light of your experience in this noisy world of ours.

1 Probability measures

In the context of probability spaces, we will often use special notation. Our
coverage of finite measures is “limited” to probability measures. But this does
not actually lose any generality, because every finite measure can be thought of
as a rescaled version of a probability measure. In practice, rescale any and every
finite measure that you’re dealing with so that you can freely apply the toolbox
and intuition of probability theory! Typically we will use the symbol P for a
probability measure on Ω. We use capital letters (usually X, but otherwise in
the range from U to Z) for vector-valued (or R̄-valued) functions on probability
spaces. Breaking with De Finetti notation, we will denote the P-integral by E.
I just can’t help but prefer to distinguish Probability and Expectation for the
sake of my own intuition. If we write EX∼P g(X), we mean the P-integral of
g ◦X where X has distribution P on its codomain; this is the same thing as the
P -integral of g, so we could also represent it as Pg and avoid any reference to
Ω or P. Along these lines, EX∼PX would be denoted PI where I is the identity
function.

WRITE this section.

2 Expectations

An essential intuition regarding any expectation operator is that it generalizes
the idea of weighted averaging.

Theorem 2.1. If X is a Pettis integrable function taking values in a real LCHS,
then its expectation EX is in the closure of the convex hull of the range of X.

1.1 Prove Theorem 2.1.

1.2 Suppose X maps almost every ω ∈ Ω to a particular v ∈ V. Assuming
V′ separates points, show that EX = v.

1.3 Let H be a Hilbert space and let X be an H-valued function that
is Pettis integrable with respect to a probability measure P. If the
Banach space is separable, Pettis integrability implies Borel measura-
bility, by the Pettis Measurability Theorem. Show that for any h ∈ H,
the BV-decomposition holds:

EL‖h−X‖2 = ‖h− EX‖2 + EL‖X − EX‖2

as long as the two squared-norms are measurable. It is sufficient for
X to be measurable.

1.4* Let (Xn) be a sequence of Banach-space valued functions on a prob-
ability space. Suppose that for all ε > 0, we are able to bound∑

P(‖Xn −X‖ ≥ ε) by a finite number (which is allowed to depend
on ε). Explain why the Borel-Cantelli Lemma lets us conclude that

Xn
a.s.→ X.

Exercise ?? established that the integral is a linear operator on the space of
integrable functions. In particular, this implies that if Ω is partitioned into n
measurable subsets, then the integral of f is equal to the sum of the integrals
taken with f and µ restricted to those subsets (if the integrals exist):

µ f = µ

(
f

n∑
i=1

Ei

)

=
n∑
i=1

µ (fEi)

In particular, when the measure in question is a PM, we often want to go a step
further and express the expectation as an average of “conditional expectations,”
which we define implicitly in the following derivation:

EX = E

(
X

n∑
i=1

Ei

)

=

n∑
i=1

E(XEi)

=

n∑
i=1

(PEi)
∫
Ei

1
PEi

X(ω)dP(ω)

=

n∑
i=1

(PEi)
∫
Ei

X(ω)d P
PEi

(ω)

=

n∑
i=1

(PEi)EEiX (1)

We will have more to say on this topic in Section REF.

1.5 Suppose f is Bochner integrable. Explain why fE is also Bochner
integrable for any E ∈ Σ.

1.6 Define X̃ to be the function that takes the constant value EEi
X on

Ei for i ∈ {1, . . . , n} (assume these expectations exist). Show that
EX̃ = EX.

Let f map from a topological vector space to R. We say that f is Jensen-
convex if for every v in its domain there exists a continuous affine functional l
such that l(x) = f(x) and l ≤ f .

1.7 Prove that every Jensen-convex function is convex. Show that every
convex function with a finite-dimensional domain is Jensen-convex.

Convex functions play a key role in the study of optimization. Convexity is
also important in probability theory due in part to Jensen’s inequality.

Theorem 2.2 (Jensen’s inequality). Let V be a topological vector space and
X be a Pettis integrable V-valued function. If f is Jensen-convex and f ◦X is
Borel measurable, then

f(EX) ≤ ELf(X).

If f is strictly convex and X does not have a point-mass distribution, then the
inequality is strict.

1.8 Prove Jensen’s inequality.

1.9 Assume that f is a convex on an open subset of a normed space,
and that at every point in its domain, its directional derivative is
bounded. Notice that the directional derivatives don’t have to be
uniformly bounded; the bound can depend on the point. Show that
f is Jensen-convex.

1.10 Let X be an integrable random variable, and let f and g be convex
functions from R to R. Is it true that

ELf(g(X)) ≥ f(g(EX)) ?

2.1 Generalized expectations

In the definition of the LpX-norm, the norm of the function is taken to the p
power, then an integration occurs, then the original transformation is “undone”
by taking the 1/p power. This pattern of transforming, integrating, then inverse
transforming is worth a bit of attention.

1.11 For the space of real sequences, considered as functions from N to
R with counting measure µ on N, the Lp(µ)-norm is also called the
lp-norm and denoted ‖ · ‖p. In other words, s := (sn) has lp-norm

‖s‖p =

(∑
i

|si|p
)1/p

.

The space of sequences with finite lp-norm is also called the lp-space
(or simply lp). Show that lp ⊆ lq for p ≤ q.

If X : Ω 7→ V and ψ : V 7→ W is injective and continuous on the range
of X, then EψX := ψ−1[Eψ(X)] (if it exists) will be called the ψ-expectation
of X. Any such expectation might also be called a generalized expectation, a
quasi-arithmetic expectation, or a Kolmogorov expectation.

1.12 Explain why the ψ-expectation is equivalent to the T ◦ψ-expectation
for any injective continuous affine operator T .

1.13 Show that every ψ-expectation has the averaging property described
in Theorem 2.1 as well as the value-preservation property of Exer-
cise 1.2.

1.14 Show that ψ-expectations have a partition property akin to derivation
(1) and Exercise 1.6.

1.15 In the context of random variables, ψ : R → R must be strictly
monotonic on X(Ω) in order to be continuous and injective. Show
that if ψ : R → R is increasing on X(Ω), then the ψ-expectation
operator is increasing, i.e. X ≤ Y implies EψX ≤ EψY .

When X is a random variable and the transformation has the form ψ(t) =
tp, we denote the φ-expectation (using the Lebesgue integral, so that ±∞ is
allowed) by Ep and call it a power expectation. In particular, if X is R+-valued,
then EpX is well-defined for every p ∈ R. Based on limiting behavior, E0 is
defined to be

E0X := exp(EL logX)

and is called the geometric expectation. Additionally, based on limiting behav-
ior, E−∞ is defined to be the essential infimum and E∞ is defined to be the
essential supremum. The p = −∞ and p =∞ case don’t exactly fit the defini-
tion of ψ-expectations, but they do have many of the properties associated with
ψ-expectations.

1.16 True or false: for any non-negative random variable X, a ∈ R, and
p ∈ R̄, the identity Ep(aX) = aEpX holds.

Theorem 2.3 (Power Expectation inequality). Let X be a non-negative random
variable. Then for any −∞ ≤ p ≤ q ≤ ∞,

EpX ≤ EqX.

In particular, the Power Expectation inequality implies that ‖X‖Lp
X(P) ≤

‖X‖Lq
X(P) for p ≤ q. Thus LpX(P)-spaces have a “reversed” order of inclusion

compared to lp spaces.

1.17 Prove the Power Expectation inequality.

Three special cases of power expectations are called Pythagorean expec-
tations: p = 1 (the [arithmetic] expectation), p = 0 (the geometric expec-
tation), and p = −1 (the harmonic expectation). The more familiar terms
Pythagorean/arithmetic/geometric/harmonic mean can be interpreted as the
specific case of a mapping from {1, . . . , n} to R or R+ with 1/n times counting
measure on the domain.

EXERCISE using geometric expectation - reveal its role in rate problems -
move the finance example here and include a lengthy discussion in the solution.

EXERCISE using harmonic expectation - reveal its role in rate problems,
e.g. physics, finance.

EXERCISE introducing LogSumExp

1.18 p, q ∈ [1,∞] are called conjugate exponents if 1/p + 1/q = 1, or in
other words, if the harmonic mean of p and q is 2. Prove Young’s
inequality: for conjugate exponents p and q, and any a, b ∈ R+,

ab ≤ ap

p
+
bq

q
.
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