
Integrals

You’ll recall that the Reimann integral is defined as a limiting sum of areas
of vertical slices under a real-valued function. Some decades after Bernhard
Reimann formulated his integral, Henri Lebesgue turned that idea on its side:
he defined an integral as a limiting sum of areas of horizontal slices. Lebesgue’s
invention was later modified by Salomon Bochner into a notion of integral that
can be applied to functions that map from a measure space to a Banach space.
Israel Gelfand and B.J. Pettis abstracted the concept even further. In this
section, we describe the most prominent measure-theoretic notions of integral
and cover some of their properties.

1 Defining integrals

In our exploration of measure spaces, we saw how a premeasure µ defined on a
semi-ring of subsets can be naturally extended to the completion of the sigma
field generated by that semi-ring. An equivalent formulation instead considers
µ to be a functional (called an integral) defined on indicator functions of those
subsets: µ IA ≡ µA. This idea motivates us to continue extending the domain
of µ to more functions if it naturally assigns them a value.

1.1 The discrete integral

Intuitively, the idea of the integral is to calculate a “total” value in common
applications. For instance, consider making a salad by mixing m different ingre-
dients, indexed by {1, . . . ,m}. Let µ be a measure (with the power set 2{1,...,m}

as its domain) that maps {i} to the number of servings of ingredient i that the
salad contains. Define a function f by letting f(i) equal the number of calories
per serving of ingredient i. To find the total number of calories in the salad, we
simply need to sum over the ingredients, “weighting” the calories per serving
by the number of servings:

m∑
i=1

[µ {i}]f(i)

In general, a more convenient formulation is to instead sum over the differ-
ent possible values in the range of f . This change in perspective hints at the
difference between Reimann integrals and Lebesgue integrals. For instance, in
some situations the domain of f could have infinite cardinality while its range
has finite cardinality; then we still have a finite sum over the values in the range
{v1, . . . , vn}.

µ f :=

n∑
i=1

[µ {f−1(vi)}]vi.

As long as we know what measure to assign to the pre-image of each xi and
those measure values are finite, then we can calculate this total. By convention,
if zero (or, more generally, the zero vector) is in the range of f , we omit it from
the sum, even if its pre-image has infinite measure. We take the above as the
definition of the integral with respect to µ of any function f that maps from
Ω to finitely many values in a real or complex vector space V, assuming each
{f−1(vi)} is in Σ̄(µ) and has finite measure for non-zero vi. If any of those pre-
images are not in Σ̄, then the integral is undefined. When V is R, we sometimes
allow for more sets of infinite measure, as you will see in the Lebesgue integral
construction. Otherwise, we leave the integral undefined if the pre-image of any
non-zero vi has infinite measure.

If V also has a topology, then it is natural to extend this idea to functions
that take a countable infinity of values by defining

µ f :=
∑
i

[µ {f−1(vi)}]vi

if the pre-images are all in Σ̄ and the infinite sum is unconditionally convergent.

1.1 Explain why the integral of a discretely-valued function from Ω to V
commutes with all continuous linear functionals. Explain also why
unconditional convergence ensures that there is only one vector vf
for which l(vf ) = µ l(f) for all l ∈ V′.

B. J. Pettis extended the notion of an integral by taking commutation with
continuous linear functionals to be the defining property. But before we can
make sense of his formulation, we need to learn about Lebesgue’s integral for
R̄-valued functions.

1.2 The Lebesgue integral for R̄-valued functions

The Lebesgue integral on R̄-valued functions plays a central role in the con-
struction of the Bochner integral and in the definition of the Pettis integral for
vector-valued functions. Those two concepts turn out to be almost but not quite
generalizations of the Lebesgue integral. We can already see one difference: R̄
is not a vector space. Why do we care about including ±∞? One reason is
that a sequence of real-valued functions may have a point-wise limit that is
infinite in some places; it is convenient that the Lebesgue integral can handle
such point-wise limits. The same goes for point-wise infimum and point-wise
supremum.

Let (Ω,Σ, µ) be a measure space. We start our definition of the Lebesgue
integral with the most “obvious” cases: the Lebesgue integral of any measurable
set’s indicator function equals the measure of that set, even if it is infinity.
Next, we take a baby step by extending the definition to non-negative simple
functions. Suppose s ∈ S+(Ω,Σ) has a representation

s :=

n∑
i=1

IAi
xi

where each Ai ∈ Σ and each xi ∈ R+. The Lebesgue integral of s with respect
to µ is defined to be

µLs :=

n∑
i=1

(µAi)xi.

1.2 Let’s establish that the Lebesgue integral is well-defined for the non-
negative simple functions: explain why the value of µLs does not
depend on the choice of representation for s.

Now we propose a new target: M+(Ω,Σ) (hereafter denoted M+). We define
the Lebesgue integral of f ∈M+ to be

µLf := sup
s≤f

µLs (1)

where the supremum is taken over all the functions in S+ that are everywhere
upper bounded by f . Again, µLf may be infinite.

Why did we limit the definition to the strongly measurable functions? M+

comprises exactly the non-negative functions that can be approximated point-
wise by a sequence of simple functions. Thus if f maps from Ω to R̄+ but is
not in M+, then there must be gaps between f and sups≤f s. However, when
f ∈M+, we have f = sups≤f s, as you will verify in Exercise 1.3.

1.3 Devise a point-wise non-decreasing sequence of simple functions that
approaches f ∈M+ at every ω ∈ Ω.

1.4 If a, b ∈ R+ and f, g ∈M+, show that µL(af + bg) = aµLf + bµLg.

From Exercise 1.3, every f ∈M+ can be approximated from below by simple
functions. It is comforting to learn that every sequence of simple functions
converging upward to f has the same limit of integrals, and that limit is µLf .

ETheorem 1.1 (Monotone Convergence Theorem, see Pollard, 2002, Section
2.4). Suppose (fn) is a non-decreasing sequence of functions in M+. Then
lim fn ∈M+ and µLfn ↑ µL lim fn.

Interestingly, it turns out that every functional on M+ that behaves like a
Lebesgue integral in a few basic ways is a Lebesgue integral.

EProposition 1.2 (see Pollard, 2002, Theorems 2.12 and 2.13). Suppose γ is
a mapping from M+(Ω,Σ) to R̄+ such that

(i) γ maps the zero function to 0

(ii) for a, b ∈ R+, γ (af + bg) = aγ f + bγ g

(iii) f ≤ g implies γ f ≤ γ g

(iv) γ has the Monotone Convergence property. In other words, γ could be
substituted in place of µL in the Monotone Convergence Theorem, and the
statement would be true.

Then γ is the Lebesgue integral corresponding to the measure on Σ defined by
A 7→ γ IA. Conversely, every Lebesgue integral corresponding to a measure on
(Ω,Σ) has the four properties listed.

Our next target is M(Ω,Σ) (hereafter denoted M). Any real-valued function
f can be expressed as the difference f+−f− where f+ := f∨0 and f− := (−f)∨0.
We define µLf to be µLf+ − µLf− unless both of these quantities are infinity.
In that case, the Lebesgue integral of f is undefined.

1.5 For f ∈M , how do we know that f+ and f− are in M+?

1.6 Suppose f ∈ M has a well-defined Lebesgue integral. Show that for
any g ∈ M with f ≤ g (everywhere), µLf ≤ µLg. In other words,
you’re showing that the Lebesgue integral is an increasing functional
on the set of M for which it is well-defined. The partial ordering is
defined by point-wise comparisons of the functions.

1.7 Suppose f, g ∈ M have well-defined Lebesgue integrals. Prove that
µL(f + g) = µLf + µLg iff µLf and µLg aren’t infinite with opposite
sign.

1.8 Prove the Borel-Cantelli Lemma (BCL): If f ∈M is integrable, then
the set where f(ω) ∈ {−∞,∞} must be negligible.

1.9 Prove Fatou’s Lemma: If (fn) is a sequence in M+, then

µL lim inf fn ≤ lim inf µLfn

1.10 Let f, g ∈ M be in the same µ-equivalence class. Show that they
must have the same Lebesgue integral.

Finally, there is one last step in our extension. As described in REF, it is
perfectly natural to extend the measure µ to sets in Σ̄(µ). Thus, we should not
hesitate to apply the Lebesgue integral to functions in M(Ω, Σ̄).

1.11 True or false: g ∈ M(Ω, Σ̄) iff there exists an f ∈ M(Ω,Σ) that
disagrees with g only on a µ-subnegligible set.

Defining Lp
X-norms and spaces

1.12 Given a real Banach space X, explain why the integrated norm
‖f‖L1

X
:= µL‖f‖ is well-defined for any f ∈ MX(Ω,Σ). What about

a generalization of this, ‖f‖Lp
X

:= [µL‖f‖p]1/p with p ∈ [1,∞]? The

p = ∞ case needs clarification: ‖f‖L∞
X

is defined to be the essen-

tial supremum of f . This is consistent with the limiting behavior as
p→∞. Show that ‖·‖Lp

X
is absolutely homogeneous.

ETheorem 1.3 (Minkowski’s inequality, CITE SOURCE). For any p ∈ [1,∞]
and f, g ∈MX(Ω,Σ),

‖f + g‖Lp
X
≤ ‖f‖Lp

X
+ ‖g‖Lp

X

As defined in Exercise 1.12, the functional ‖·‖Lp
X

on MX is called the LpX(µ)-

norm (or the LpX-norm if the measure is clear from context or the LpX(Ω,Σ, µ-
norm if the measurable space is not clear from context). Notice that the
only role of the measure in L∞(µ) is in determining which sets are negligi-
ble. Exercise 1.12 and Minkowski’s inequality together show us that ‖·‖Lp

X
is

a semi-norm on MX. It is of course a true norm on the Kolmogorov quotient,
that is, the equivalence classes of MX in which equivalence of f and g means
[µL‖f−g‖p]1/p = 0. The same name L1

X-norm and notation is used for the semi-
norm on functions and the norm on equivalence classes of functions. Usually
the distinction between functions and their equivalence classes is unimportant
anyway.

1.13 Explain why these equivalence classes are exactly the same as the
µ-equivalence classes defined in Section REF.

The subset of MX with finite LpX(µ)-norm is a semi-normed space called
LpX(Ω,Σ, µ); the normed space of µ-equivalence classes is denoted LpX(µ). If the
relevant measure space is not clear from context, one should include it in the
notation: LpX(Ω,Σ, µ) and LpX(Ω,Σ, µ). On the other hand, when the measure
space is clear, one can write LpX and LpX. When the codomain is R, we omit the
subscript, writing simply Lp(µ) and Lp(µ).

ETheorem 1.4 (Fischer-Riesz Theorem, see Neerven, 2010, Section 1.3.2).
Given a measure space (Ω,Σ, µ), a Banach space X, and any p ∈ [1,∞], the
normed space LpX(Ω,Σ, µ) is complete.

Even though it is only a semi-normed space, we will still speak of convergence
in LpX spaces. Based on the topological definition of limits, there is nothing

improper about this. The notation fn
Lp

X→ f means ‖f − fn‖Lp
X
→ 0. If a

sequence converges to a function in this semi-normed space, it also converges to
all of the other functions in that same µ-equivalence class.

Theorem 1.5. Let (fn) be a sequence of functions in LpX. If fn
Lp

X→ f , then there
exists a subsequence of (fn) that converges uniformly to f almost everywhere.

For p =∞, the relationship is much stronger. L∞X convergence is equivalent
to uniform convergence almost everywhere.

1.14 Use the completeness of LpX-spaces to prove Theorem 1.5.

1.15 Devise an example in which fn
L1

X→ f but (fn) does not converge almost
everywhere to f .

1.16 Devise an example in which (fn) converges point-wise to f but it is

not the case that fn
L1

X→ f .

1.17 A sequence of functions (fn) converges in measure to f (written

fn
µ→ f) if for every ε > 0, µ {‖fn−f‖ > ε} → 0. Explain why almost-

everywhere convergence implies convergence in measure. Devise an
example of convergence in measure without almost-everywhere con-
vergence.

We see from Exercises 1.15 and 1.16 that the relationship between L1
X

convergence and point-wise convergence is a bit complicated. Neither type of
convergence implies the other. But we also know from Theorem 1.5 that L1

X
convergence does imply the existence of a subsequence that converges almost
everywhere to the L1

X-limiting function. Going the other direction, the Dom-
inated Convergence Theorem (DCT) provides a sufficient condition for point-
wise convergence to imply L1

X convergence. A function g is said to dominate
another function if g upper bounds that function on its entire domain. To say
that g dominates a set of functions means that it dominates every one of them
individually.

Theorem 1.6 (Dominated Convergence Theorem). Suppose a sequence (fn) in
L1
X converges point-wise to f . If there exists a function g that dominates the

sequence (‖fn‖) and has µLg <∞, then fn
L1

X→ f .

1.18 Use Fatou’s Lemma to prove the DCT for L1(µ). Use that result to
prove the general DCT.

1.19 Show that the simple functions that belong to LpX(µ) comprise a dense
subspace of LpX(µ).

We will have much more to say about LpX spaces in Chapter REF.

1.3 The Bochner integral for X-valued functions

The Lebesgue integral enabled us to extend a measure to a class of R̄-valued
functions. Next, we construct the Bochner integral (or strong integral) which
applies the same thinking to functions mapping to any real or complex Banach
space. Throughout the remainder of this section, assume X is a real Banach
space. If a function of interest maps from Ω to a normed space that isn’t nec-
essarily complete, then you can always consider the completion of that normed
space as the function’s codomain. Thus the Bochner integral theory we develop
here can still be applied accordingly.

Again, we begin with the simple functions. Let s ∈ SX(Ω,Σ) have represen-
tation

s(ω) =

n∑
i=1

IAi
(ω)xi, (2)

If each of these Ai has finite measure, then the Bochner integral of s is defined
to be

µ s :=

n∑
i=1

(µAi)xi;

otherwise the Bochner integral µ s is undefined. We denote the subset of SX
with Bochner integrals by S1X(µ).

1.20 Explain why no simple function has a unique representation of the
form (2). Show that µ s does not depend on the choice of represen-
tation.

We now extend this integral to the L1
X-closure of S1X. Let f be a function from

Ω to X. If there exists a sequence (sn) in S1X with sn
L1

X→ f , then the Bochner
integral of f is µ f := limn→∞ µ sn. Otherwise the Bochner integral of f is
undefined. Any function with a Bochner integral is called Bochner integrable.

1.21 Let’s make sure that our definition of µ f makes sense. Show that
the the convergent sequence (sn) of simple functions must have a
limit of Bochner integrals. Show also that if there exists any other
satisfactory sequence in S1X, it must have the same limit of Bochner
integrals.

1.22 Explain why every Bochner integrable function must be in MX.

Importantly, the set of Bochner integrable functions is exactly L1
X.

Theorem 1.7. f is Bochner integrable iff f ∈ L1
X.

The properties described for S1X sequences in Exercise 1.21 actually hold
more generally.

Theorem 1.8. Let (fn) be a sequence of functions in L1
X. If fn

L1
X→ f , then f is

Bochner integrable and µ fn → µ f .

Theorems 1.7 and 1.8 indicate that the theory of Bochner integration is
intimately connected to L1

X spaces.

1.23 Prove Theorem 1.7.

1.24 Prove Theorem 1.8.

It is convenient that for Bochner integrable real-valued functions, our theory
of Bochner integration subsumes the theory of Lebesgue integration.

1.25 Explain why f : Ω→ R is Bochner integrable iff its Lebesgue integral
is finite. Show that the two integrals coincide (µ f = µLf) in that
case.

1.26 Show that the Bochner integral “commutes” with continuous linear
functionals. That is, if f is a Bochner integrable X-valued function,
then for any l ∈ X′

µ l(f) = l(µ f)

1.4 The Pettis integral for V-valued functions

Now, we return to the even more general setting where V is a real topological
vector space, and think about functions that aren’t necessarily discretely-valued.
Let f : Ω→ V be a weakly measurable function. If there exists a unique vf ∈ V
such that

l(vf ) = µ l(f) for every l ∈ V′, (3)

then we call vf the Pettis integral (or weak integral) of f . In plan English, the
Pettis integral of f is a unique vector that can be used “in place of” f(ω) without
affecting the values of the Lebesgue integrals of any continuous linear functionals
composed with f . In fact, whenever we say integral, we mean Pettis integral.
When f has a (Pettis) integral, we will call it an integrable function. What
we’re calling the Pettis integral is sometimes called the Gelfand-Pettis integral.
Notice that if f is integrable, then it must of course be weakly measurable.

1.27 Suppose the dual space V′ separates points. Show that an vf ∈ V
satisfying (3) is unique if it exists. Recall that the dual space of any
LCHS separates points - see Exercise REF

We’ve seen in Exercise 1.26 that Bochner integrals commute with continu-
ous linear functionals, so we can conclude that every Bochner integral is a Pettis
integral. The dual space of a normed space separates points, so any Bochner
integral is indeed a unique vector satisfying (3). Likewise, Exercise 1.1 shows
that discrete integrals on topological vector spaces are Pettis integrals as well.
When we considered integrals of measurable functions taking finitely many val-
ues, we did not assume any topology on the vector space; in those cases, the
discrete integral is a Pettis integral for every possible topology on the space
since all linear operators commute with a finite sum by definition.

Thus, the Pettis integral definition can be seen as another logical step in
extending a measure to more functions than the Bochner construction reached;
we will continue to use the same notation (e.g. µf) for Pettis integrals. The
term integral can be used to refer to either the operator on the space of functions
or to that operator’s output.

1.28 Show that a real-valued function is integrable iff it is Bochner inte-
grable. Taking this fact in conjunction with Exercise 1.25, we see
that the Lebesgue, Bochner, and Pettis integrals all coincide for any
function with a finite Lebesgue integral.

There are cases where a function is not Bochner integrable but it is (Pettis)
integrable. One obvious example of the limitations of Bochner integral theory:
it is clear from our construction and from the Pettis Measurability Theorem
that every Bochner integrable function has to be essentially separably-valued.
To see this, let’s compare the Bochner and Pettis integrals in the context of a
countably-infinitely-valued functions.

1.29 Let f(ω) :=
∑
i IAi

(ω)xi be a series with each Ai ∈ Σ and each xi in
the Banach space X. Based on Exercise 1.1, we see that f is Pettis
integrable iff it is unconditionally convergent and also that the Pettis
integral is

∑
i(µAi)xi if it exists. Show that f is Bochner integrable

iff the sum
∑
i(µAi)xi is absolutely convergent.

By the Dvoretsky-Rogers Theorem (Theorem ??), we can conclude that ev-
ery discrete integral in a finite-dimensional Banach space is a Bochner integral.
The theorem also tells us that in every infinite-dimensional Banach space, there
exists a sequence that is unconditionally convergent but not absolutely conver-
gent. Based on Exercise 1.29, we realize that for any such sequence, one could
construct a measure space and function for which the Pettis integral exists while
the Bochner integral doesn’t.

Let’s take a moment to think about the role of the codomain’s topology in
the Pettis integral definition. The linearity of a functional is purely algebraic,
but the continuity has everything to do with topology. Suppose vf is the Pettis
integral when using topology τ1. Will it remain the Pettis integral for a coarser
topology τ0 ⊆ τ1? It is certainly the only candidate, as it still commutes with all
of the (now possibly fewer) continuous linear functionals. The only thing that
can go wrong is that it may no longer be a unique satisfier of (3), though that
is guaranteed by, for instance, an LCHS structure governing τ0. What about
if we consider a finer topology τ2 ⊇ τ1? Again, vf is the only candidate, but
we need to figure out whether or not there still exists a Pettis integral, as there
may now be more continuous linear functionals.

In the next few exercises, we will identify contexts in which we can be more
explicit about what form a Pettis integral takes when it exists.

1.30 Suppose f maps from (Ω,Σ, µ) to a TVS of functions from a set U to
a real TVS V; we will write f(ω) as φω in order to more intuitively
think of the range of f as a family of functions {φω : ω ∈ Ω} in the
function space. Assume the topology we’re using on this space of
functions is fine enough that the point-evaluation functionals lu are
all continuous. Explain why if f is integrable, its Pettis integral must
be equal to the point-wise integral:

[µ f ](u) =

∫
φω(u)dµ(ω).

1.31 Let X be a Banach space with a Schauder basis B := (b1, b2, . . .). Let
f be an X-valued function, and let (f1, f2, . . .) be its coefficients with
respect to B. That is, for any ω ∈ Ω, the fi(ω) are real numbers
defined by

f(ω) =
∑
i

fi(ω)bi.

Explain why if f is integrable, then

µ f =
∑
i

(µ fi)bi.

1.32 Is there a result analogous to that of Exercise 1.31 for Hamel bases?

Indefinite integrals

If fA is integrable for every A ∈ A then we will call f indefinitely integrable,
What we call indefinite integrability is taken to be the definition of “integrabil-
ity” in the context of Pettis integral by many authors. then the mapping from
A to V defined by

A 7→ µ fA (4)

is called the indefinite integral of f with respect to µ. We may also denote µ fA
by µA f to highlight the idea that it is just the ordinary integral after restricting
µ and f to A ⊆ Ω. f is called a density with respect to µ for the vector measure
satisfying (4). Another term for density is Radon-Nikodym derivative.

1.33 Show that the mapping (4) is indeed a vector measure and that it is
absolutely continuous with respect to µ.

1.34 Show that every Bochner integrable function is indefinitely Bochner
integrable (i.e. for every A ∈ A, fA is Bochner integrable).

1.35 Show that two densities with respect to µ define the same measures
iff they are µ-equivalent.

1.36 When f is Bochner integrable, explain why the vector measure defined
by (4) must have finite total variation.

2 Properties of integrals

We’ve seen that the Pettis integral generalizes the notions of discrete integrals
and Bochner integrals. For the sake of efficiency, we will first cover some proper-
ties that hold for all Pettis integrals before moving on to more specific properties
of Bochner integrals.

2.1 Properties of Pettis integrals

The following exercises highlight some of the key properties of Pettis integrals.

1.37 Show that if f and g are µ-equivalent, then their Pettis integrals are
equal. In other words, if one of the functions has its Pettis integral
defined, the other function’s Pettis integral is also defined and is equal
to the first. Consequently, if one is undefined, the other must also be
undefined.

1.38 Show that the set of Pettis integrable functions from (Ω,Σ, µ) to a
real TVS V is a subspace and that the Pettis integral is a linear
operator on this space.

1.39 Suppose f is a V-valued Pettis integrable function, and T is a con-
tinuous linear operator from V to W. Show that T ◦ f is weakly
measurable and that µ (T ◦ f) = Tµ f .

The Pettis integral operator commutes not only with continuous linear func-
tionals but with any continuous linear operator that is acting on a Pettis in-
tegrable function. Furthermore, the Pettis integral operator is itself a linear
operator.

1.40 Let µ be Lebesgue measure on R, and let k ∈ C(I × J) where I and
J are real intervals. For any g ∈ C(J), define Kg by

(Kg)(x) =

∫
J

k(x, y)g(y)dµ(y)

for every x ∈ I. The operator K is called an integral transform, and
k is called its kernel. Show that K is a continuous linear operator
from C(J) to C(I). Provide an interpretation in terms of a Pettis
integral.

1.41 Let I be an interval of the real line. Let ω 7→ φω be a mapping from
(Ω,Σ) to the Banach space of continuously differentiable real-valued
functions with domain I and with finite C1(I)-norm. Suppose the
Pettis integral of ω 7→ φω with respect to µ exists. Explain why for
all x ∈ I,

d

dx

∫
X
φω(x)dµ(ω) =

∫
X

∂

∂x
φω(x)dµ(ω)

and why the resulting function on I is continuous and bounded.

1.42* Another technique to justify derivative-integral interchanges is by us-
ing the Dominated Convergence Theorem to pass a limit through an
integral. In this exercise, use the DCT to prove a measure theoretic
version of the Leibniz integral rule: Let {φω : ω ∈ Ω} be a family of
differentiable real-valued functions defined on an open interval I ⊆ R.
Suppose µ is a measure on Ω for which ω 7→ φω(x) is integrable for
every x ∈ I. Suppose also that there exists an integrable real-valued
function g : Ω→ R+ such that | ∂∂xφω(x)| ≤ g(ω) for all ω ∈ Ω. Show
that for all x ∈ I,

d

dx

∫
X
φω(x)dµ(ω) =

∫
X

∂

∂x
φω(x)dµ(ω).

1.43* Using a supremely clever trick, evaluate
∫∞
0
x2e−x dx.

1.44 Let f be a strongly measurable function from (Ω,Σ) to a Banach
space X. Prove that if f is integrable with respect to µ, then ‖µ f‖ ≤
ML‖f‖.

2.2 Properties of Bochner integrals

Every Bochner integral is also a Pettis integral, so it has the properties we have
already covered. Here we point out a few additional properties that Bochner
integrals have.

A variation on the result of Exercise 1.39 provides a different condition
for linear operators to commute with Bochner integrals. A linear operator T
from one TVS to another is called a closed linear operator it has the property
that for any convergent sequence vn in its domain, the sequence it maps to has
limTvn = T lim vn if that sequence converges. This is weaker than continuity
because the sequence of range values is allowed to diverge.

ETheorem 2.1 (Hille’s Theorem, see Neerven, 2010, Theorem 1.19). Let f
map from (Ω,Σ, µ) to a Banach space X, and let T be a closed linear operator
from S ⊆ X to a Banach space Y. Suppose the range of f is a subset of S. If f
and T ◦ f are both Bochner integrable, then µ f ∈ S and

µ (T ◦ f) = Tµ f

We’ve seen that every Bochner integrable function is the density for some
vector measure with finite total variation that is dominated by µ (Exercise REF).
We say that a Banach space X has the Radon-Nikodym property with respect to
µ if a conditional converse to this holds: every γ ∈ MX(Ω,A) dominated by
µ has a Bochner integrable density with respect to µ. We say that X has the
Radon-Nikodym property if it has the Radon-Nikodym property with respect
to every finite measure.

ETheorem 2.2. Any of the following conditions are sufficient for a Banach
space to have the Radon-Nikodym property:

• it is reflexive,

• its dual space is separable,

• it is the l1-space.

Still need to write this section...

2.3 Properties of Lebesgue integrals

When a real-valued function is integrable, it is Bochner integrable and thus
has all of the properties we have already covered. Here, we will explore some
additional properties that hold specifically for real-valued (as well as R̄-valued)
functions.

- use term indefinite Lebesgue integral as well - how does it work in that
case? - only need to worry about case when µLf is ±∞ - the other cases are
already taken care of by the more general result, right? - from Fremlin Prop
232D - show that it is a signed measure and that it is truly continuous with
respect to µ

Theorem 2.2 provided conditions that guarantee the existence of densities
for vector measures with finite total variation. For signed measures, we have a
more convenient result that doesn’t require finite total variation.

ETheorem 2.3 (Radon-Nikodym Theorem, Fremlin, 2000, Theorem 232E).
Let (Ω,A, γ) be a measure space. If µ is a signed measure that is truly continuous
with respect to γ, then there exists an integrable function f such that for every
A ∈ A,

µA = γA f

By Exercise ??, if the dominating measure is σ-finite, then absolute continu-
ity is sufficient for the existence of a density. In fact, that is the usual statement
of the Radon-Nikodym Theorem.

Still need to write this section...

3 Existence of integrals

We’ve seen a number of properties that hold “when the integral exists.” Here
we collect additional observations that can be useful when trying to guarantee
existence.

1.45 Are there converse statements to Exercise 1.31 and 1.32 that can
guarantee integrability of f when all the coefficient functions fi are
integrable?

1.46 We say that (fn) converges weakly in measure to f if every contin-
uous linear functional l has l ◦ fn converging in measure to l ◦ f .
Suppose (fn) is a sequence of integrable functions converging weakly
in measure to f and that limµ fn exists. Show that µ f = limµ fn.

One might hope that the integrability of all the continuous linear functionals
of a function would imply its integrability. At least in the context of probability
spaces a slightly stronger condition is sufficient. You will see in Section ?? why a
finite Lp(P)-norm with p > 1 is a stronger requirement than a finite L1(P)-norm.

ETheorem 3.1 (see Neerven, 2010, Theorem 1.20). Let X be a strongly mea-
surable function from a probability space (Ω,Σ,P) to a Banach space X. If there
exists a fixed p ∈ (1,∞] for which (l◦X) ∈ Lp(P) for all l ∈ X′, then X is Pettis
integrable.

Recall that a function is Bochner integrable iff it is both strongly measurable
and in L1

X. In the context of a probability space, these conditions are satisfied
by any measurable function with a precompact range.

Theorem 3.2. Suppose X is a weakly measurable function from a probability
space to a Banach space. If the range of X is precompact, then X is Bochner
integrable.

Suppose the underlying measurable space is a topological space with its Borel
σ-algebra. If X is a continuous mapping, then precompactenss of the range of
X is implied by precompactness of its domain - see Exercise REF.

Look ahead to Exercise ?? for an existence fact when the codomain of f is
a space of continuous real-valued functions.
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