
Measures

As in Chapter REF, we begin by defining a zoo of closely related types of
objects. The important concept we’re building toward is the measure, a func-
tion on σ-algebra satisfying certain axioms, but there are a variety of definitions
worth identifying along the way. We will then list some of the useful classifica-
tions of measures. Finally, we will see how weaker objects can be extended to
measures and how measures can be extended beyond their domains.

1 Types of set functions

A set function µ is additive (or finitely additive) if its value for any union of
finitely many disjoint sets is equal to the sum of its values for those subsets.
That is, if A1, . . . , An are disjoint, then

µ(
⋃
i

Ai) =
∑
i

µ(Ai) (1)

Let A be a collection of subsets of Ω that includes ∅. A set function µ : A→
R̄+ is called a gauge if µ∅ = 0. A set function µ : A → R̄+ is called a content
if it satisfies the following two properties:

(i) there exists an A ∈ A such that µA <∞,

(ii) it is finitely additive. Notice that A isn’t necessarily closed under union.
Finite additivity only needs to hold when a finite union is in A.

A generalization of content is a charge; it allows the codomain to be R̄ and
requires the existence of a set A with |µA| <∞. To ensure that the additivity
property makes sense, we require that a charge can map to at most one of
{−∞,∞}. A set A in the domain of µ is called µ-negligible Often we just say
negligible if the charge is understood from context. if every measurable subset
of A has measure zero. When µ is a content, clearly A is negligible iffMA = 0.

1.1 Suppose A is a semi-ring that includes the full set Ω. Show that if µ
is a content, then µA ≤ µΩ for every A ∈ A.

1.2 Show that if µ is a charge, then ∅ is µ-negligible. This tells us that
every content is a gauge. So we could have defined a content as a
finitely additive gauge.

1.3 Show that if µ is a charge and A∆B is µ-negligible, then µA and µB
must be equal.

1.4 Show that the union of a countable collection of negligible sets must
itself be negligible.

If the identity (1) also holds for countably infinite collections of disjoint
sets, then µ is said to be σ-additive (or countably additive). We define a pre-
measure by replacing the content’s finite additivity axiom with σ-additivity. A
premeasure with a σ-algebra domain is called a measure, and µA is called the
µ-measure of A (or just the measure of A if µ is clear from context). A mea-
sure space is a 3-tuple comprising a set, a σ-algebra on that set, and a measure
defined on the σ-algebra.

A generalization of the measure is the signed measure, which is a σ-additive
charge defined on a σ-algebra. Importantly, signed measures can be thoroughly
handled once we understand ordinary measures thanks to the following obser-
vation.

ETheorem 1.1 (Hahn Decomposition Theorem, see Bercovici, Brown, and
Pearcy, 2016, Theorems 6.3, 6.5). If µ is a signed measure for (Ω,A), then
there exists a subset S ∈ A for which µA ≥ 0 when A is a measurable subset of
S and µA ≤ 0 when A is a measurable subset of Sc. (Any two subsets S1 and
S2 with this property can only differ from each other by a µ-negligible subset.)
Furthermore, µ is uniquely expressed as a difference of measures µ+−µ− where
S is µ+-negligible while Sc is µ−-negligible.

The unique decomposition of any signed measure µ into µ+ and µ− as in
Theorem 1.1 is called its Hahn-Jordan decomposition. The measures µ+ and
µ− are sometimes called the positive variation and negative variation of µ.. At
most one of µ+ and µ− can have ∞ in its range. µ+Ω + µ−Ω is called the total
variation of µ.

1.5 Show that an equivalent definition of the total variation of µ is

sup
∑
i

|µBi|

where the supremum is over all partitions of Ω into finitely many
measurable sets {B1, . . . , Bn}.

1.6 Show that a signed measure has finite total variation iff it is R-valued.

1.7 Devise a content that is not a premeasure.

Finally, we introduce a useful generalization of the R-valued measures. A
vector measure is a σ-additive mapping from a measurable space to a vector
space. The notion of negligibility extends in an obvious way: a measurable set
is µ-negligible if every measurable subset of it is mapped to the zero vector.
Given any measurable space (Ω,A) and vector space V, it is easy to see that
the set of all V-valued vector measures on (Ω,A) comprises a vector space.

If a vector measure µ maps into a normed space then we generalize the
concept of total variation by defining

‖µ‖TV := sup
∑
i

‖µBi‖

where the supremum is over all partitions of Ω into finitely many measurable
sets {B1, . . . , Bn}.

1.8 Show that the set of V-valued vector measures on (Ω,A) is a vector
space. Then suppose that V is a normed space, and show that and
that total variation is a norm on the vector space of vector measures.

We let MX (Ω,A) denote the normed space of all X -valued vector measures
on (Ω,A) that have finite total variation. If the subscript is omitted, it is implied
that the vector measures are real-valued; that space M(Ω,A) is called the space
of finite signed measures on (Ω,A).

2 Classifying and decomposing charges

2.1 Lebesgue decomposition

A charge µ concentrates on a measurable subset A if that set’s complement is
µ-negligible. Notice that if µ concentrates on A, then it also concentrates on
every superset of A. We use this concept introduce a few important ways that
charges can be related to each other.

Let µ and γ be charges on a chargeable space (Ω,A). We say that µ is ab-
solutely continuous with respect to γ (denoted µ � γ) if every γ-negligible set
is also µ-negligible. The more common terminology for µ � γ is γ dominates
µ. We say that µ is truly continuous with respect to γ (denoted µ �t γ) if
for every ε > 0, there exists a δ > 0 and measurable set A such that for every
measurable set B, γ (A ∩B) ≤ δ implies |µB| <∞.

We say that µ and γ are singular (denoted µ ⊥ γ) if there exists a measurable
set A such that µ concentrates on A while γ concentrates on Ac; we say that
such an A separates µ and γ. Notice that the concepts of absolute continuity
and singularity can be applied to vector measures as well, even when they are
mapping to different vector spaces; they can also be applied when one measure
is a vector measure and the other is a signed measure. Two measures µ and
γ are S-singular This is not a widely known concept, but we find it useful for
Theorem 2.2. (denoted µ ⊥s γ) if for every A ∈ A,

µA = sup
B∈N (γ)

µ (A ∩B) and γ A = sup
B∈N (µ)

γ (A ∩B)

whereN (·) is the collection of sets that are negligible with respect to the measure
argument (i.e. the measure’s null set).

1.9 Show that a set A that separates µ and γ must be (|µ|+|γ|)-essentially
unique.

1.10 Suppose µ ⊥ γ. Explain why γ must also be singular with any mea-
sure that is absolutely continuous with respect to µ.

1.11 Compare the definitions of absolute continuity and true continuity.
Is one stronger than the other?

1.12 Compare the definitions of singularity and S-singularity for measures.
Is one stronger than the other?

Any measure can be decomposed with respect to another.

ETheorem 2.1 (Lebesgue Decomposition Theorem, Fremlin, 2000, Theorem
232I). If µ and γ are measures on (Ω,A), then there exists a unique decompo-
sition µ = µs + µt + µe such that

• µs ⊥ γ,

• µt �t γ,

• µe � γ and µe is zero on every set that has finite γ-measure.

2.2 Atoms

Crucial to our classification scheme for charges will be the following categoriza-
tion of subsets with respect to a charge. Any non-negligible subset A ∈ A is
called an atom if every measurable subset B ⊆ A that is non-negligible has the
same measure as A. A charge that has no atoms is called atomless (or diffused).
Some authors say non-atomic rather than atomless, but that’s a misleading term
and should be avoided in my opinion. On the other hand, a charge is called
purely atomic if every non-negligible set contains an atom. Some authors just
say atomic for this, but I prefer to be more explicit. It turns out that these
are the only two ways in which a measure can treat its subsets in the sense of
Theorem 2.2.

ETheorem 2.2 (Johnson, 1970, Theorem 2.1). Every measure µ has a unique
decomposition into a sum of an atomless measure µc and a purely atomic mea-
sure µa that are S-singular with respect to each other.

Additionally, every purely atomic measure has a decomposition into a count-
able sum of Dirac measures: δA denotes the measure that assigns a value of 1 to
the set A (and every superset thereof), assigns a value of 0 to every set that is
disjoint with A, and considers every non-empty subset of A to be unmeasurable.

ETheorem 2.3 (Johnson, 1970, Theorem 2.2). If µ is a purely atomic measure
on (Ω,A), then there exists a unique countable collection of disjoint non-empty
sets B1, B2, . . . ∈ A and coefficients α1, α2, . . . ∈ (0,∞] (at most one of which is
∞) such that µA =

∑
i αiδBi

A for every A ∈ A.

Taken together, Theorems 2.2 and 2.3 describe a unique decomposition of
any measure into an atomless part and a countable sum of Dirac measures.

µ = µc +
∑
i

αiδBi
(2)

This applies to signed measures as well: there is a unique Hahn-Jordan de-
composition of the signed measure into two measures and a decomposition of
the form (3) for each of the signed measures. Thus a signed measure µ can be
expressed as

µ = (µ+)c − (µ−)c +
∑
i

αiδBi
(3)

where the coefficients αi are in R̄\{0} (but can’t take both values ∞ and −∞),
and at least one of (µ+)c and (µ−)c is finite.

1.13 We call µ the zero measure if it maps all sets to zero. µ is called
trivial if either it is the zero measure or it maps all non-empty sets
to infinity. Explain why the zero measure is the only measure that is
both purely atomic and atomless.

To get a feel for atomless measures, it helps to learn that they inevitably
assign a continuum of values, in the sense of Proposition 2.4. Using the Axiom of
Choice, this leads to a perhaps troubling fact (Proposition 2.5); we will discuss
implications of this result further in Section REF.

EProposition 2.4 (see Bogachev, 2007, Corollary 1.12.10). Let µ be an atom-
less measure and A be a measurable set. Then for any β ∈ [0, µA] there exists
a measurable B ⊆ A such that µB = β.

EProposition 2.5 (see Troitskii, 1994, Theorem 5). It is impossible for an
atomless measure to be defined on the power set, unless it is the zero measure.

On the contrary, any purely atomic measure µ has an extension to the power
set 2Ω; one simply needs to pick some point in each atom to assign all of that
atom’s measure to. This extension is unique iff µ is a discrete measure. A
purely atomic measure is called a discrete measure (or pure-point measure) if
the Dirac measures in its decomposition (via Theorem 2.3) all correspond to
singleton sets.

1.14 Given any set Ω, the counting measure µ for Ω is defined to be the
set function on 2Ω defined by setting µA to be the cardinality of A.
Recall that measures map to R̄+, so the counting measure doesn’t
actually distinguish different infinities. Explain why µ is atomless iff
Ω is empty.

2.3 Degrees of finiteness

Another useful way of classifying charges relates to the extent to which they
map sets to ∞. A charge is called semi-finite if it does not have any atoms of
infinite measure. If µ is a semi-finite measure, its decomposition (3) must not
have an αi coefficient of ∞. A charge is called σ-finite if Ω can be partitioned
into a countable collection of subsets of A that each have finite measure. If
µΩ < ∞, then µ is called a finite charge (or finite measure if µ is a measure).
If µΩ = 1, then µ is called a probability charge (or probability measure if µ
is a measure). We will often use “PM” as short-hand for probability measure.
It is clear that every probability charge is finite, every finite charge is σ-finite,
and every σ-finite charge is semi-finite. A charge space is called semi-finite/σ-
finite/finite if its charge is semi-finite/σ-finite/finite. In practice, charge spaces
of interest are almost always σ-finite, and many of them are finite. Accordingly,
most authors focus their attention on these types and avoid the complications
that can arise when charges aren’t σ-finite.

In Theorem 2.2, we stated that there is a unique pair of S-singular measures
that µ decomposes into. As a consequence of Proposition 2.6, when µ is σ-finite,
we don’t need to specify S-singularity to get uniqueness: there is exactly one
decomposition of µ into an atomless and an atomic part.

EProposition 2.6 (Johnson, 1970, Theorem 2.5). If µ is a σ-finite atomless
measure and γ is a σ-finite purely atomic measure, then µ ⊥s γ.

σ-finiteness is particularly convenient; often a property can be shown to hold
for finite measures and to remain in effect for a countable sum of such measures.

1.15 Suppose γ is a σ-finite measure. Show that a measure µ is truly
continuous with respect to γ iff µ� γ.

1.16 Suppose µ and γ are σ-finite. Show that µe in the Lebesgue decom-
position (Theorem 2.1) has to be the zero measure.

2.4 Borel measures

If T is a Hausdorff topological space, then any measure on (T ,B(T )) is called
a Borel measure. A Borel measure µ is called tight (or inner regular) if for
every B ∈ B(T ), µB is equal to the supremum of the measures of the compact
measurable subsets of B. A Borel measure is locally finite if every point has a
neighborhood of finite measure. A Borel measure that is both tight and locally
finite is called a Radon measure.

Theorem 2.7. A Borel measure on a Suslin space is a Radon measure iff it
assigns a finite measure to every compact set.

In particular, any finite measure on a Suslin space is a Radon measure.

Still need to write this section...

1.17 Prove Theorem 2.7.

3 Measure algebras

Given any measure space (Ω,A, µ), there is a natural algebra of µ-equivalence
classes of subsets with equivalence defined by µ-negligible symmetric difference;
we denote the collection of equivalence classes by A/µ. Exercise 1.3 tells us that
µ can also be considered a well-defined function on these equivalence classes.
The pair (A/µ, µ) is called the measure algebra of (Ω,A, µ). For any question
regarding the measures of sets, the measure algebra is all that matters; thus
studying of measure algebras is a way to focus in on what’s relevant and ignore
what’s irrelevant.

1.18 Let µ be a measure on (Ω,A). µ is called localizable if every subcol-
lection B ⊆ A/µ has a supremum in A/µ. Show that every σ-finite
measure is localizable and that every localizable measure is semi-
finite. Localizability is not a particularly common concept, but it will
allow us to state Theorem REF more precisely. And as this exercise
shows, it fits neatly between σ-finite and semi-finite.

1.19 Suppose µ is a measure on (Ω,A). Show that d(A,B) := µ (A∆B) is
a pseudo-metric on the subsets of A that have finite measure.

The function d defined in Exercise 1.19 is called the Frechét-Nikodym met-
ric on the subset of A/µ that have finite measure. In fact, the Frechét-Nikodym
metric subsumes the measure: µA is exactly the Frechét-Nikodym distance from
A to the empty set.

ELemma 3.1 (see Cohn, 1980, Lemma 3.4.7). Let (Ω,A, µ) be a measure space.
Suppose A0 is a generating class for A that includes a countable partition of Ω
into subsets of finite measure. Then the algebra generated by A0 is dense in A
in the Frechét-Nikodym metric.

The condition on A0 implies that this lemma can only apply to σ-finite
measure spaces.

Theorem 3.2. If a σ-finite measure space has a countably-generated σ-algebra,
then its Frechét-Nikodym metric space is separable.

Some authors define separability of a measure space to mean that its σ-
algebra is countably-generated. Others mean that its Frechét-Nikodym metric
space is separable. We will be clear about distinguishing the two.

1.20 Use Lemma 3.1 to prove Theorem 3.2.

1.21 Show that every Frechét-Nikodym metric space is complete.

3.1 Maharam’s Theorem

Still need to write this section...

4 Extending measures

Countable additivity (or at least finite additivity) corresponds to the notion
of a whole being exactly the sum of its parts; intuitively, it seems like a good
starting point for modeling things like volumes or masses. So we might think
of any premeasure µ with a domain A as providing a (perhaps limited) state
of knowledge about the masses of subsets of Ω. The subsets with “unknown”
masses are those that aren’t in the domain of µ.

Here’s an example. Suppose I have a sealed jar with fifteen American coins
inside. But the glass is cloudy, so I can’t see through it clearly. All I can tell for
sure is that ten of the coins are silver-colored and five are copper-colored. Pre-
tend that the various uncommon coins don’t exist for this thought experiment.
In other words, assume that each silver-colored coin is either a nickel, dime, or
quarter and that each copper-colored coin is a penny. We can model this situ-
ation with a sample space of fifteen elements, one for each coin. Our interest is
in the number of coins of various types, so we want to define a restricted version
of the counting measure on our sample space. The set of pennies is “known”
and our counting measure assigns that subset a measure of 5. Its complement,
the set of silver-colored coins (i.e. the union of the nickels, dimes, and quar-
ters), gets a counting measure of 10. The set of quarters, on the other hand,
is unknown to us. In terms of the model, that subset is not in the σ-algebra
domain of our [restricted] counting measure. Suppose after some effort we were
able to discern that two of the coins are quarters; that represents a refinement
in our knowledge. The previously known subsets are still known and still have
the same measures, but now there are additional measurable subsets as well.

In general, any extensions of µ to a larger domain (on which it remains a
premeasure) can be seen as a more refined possible state of knowledge that is
compatible with the original knowledge. If µ has domain A, then every possible
extension of µ agrees with µ on domain A (by definition of an extension); Im-
portantly, in certain cases, we can identify larger collections of sets B for which
every extension of µ to B has to agree. In those cases, we should feel secure
in claiming that µ implicitly encodes the knowledge of the masses of those sets
as well. Therefore, it is natural to extend the domain of µ to the collection of
sets for which a specific mass value is implied. The interpretation of premea-
sures presented here guides our uses of them in real-world applications. Yet it
also seems to clash with Proposition 2.5; we will have more to say on that in
Section REF.

To really understand extensions, we will need to first learn about two other
types of set functions: outer measure and inner measure.

4.1 Outer and inner measures

A measure is defined on a σ-algebra of subsets of Ω. Two related types of
set functions are inner measures and outer measures which are R̄-valued set
functions defined on the full power set 2Ω.

An R̄-valued set function µ is called countably monotone if the value it
assigns to any subset in its domain is no greater than the sum of the values it
assigns to any countable cover for that set:

µA ≤
∑
i

µBi

for every countable subcollection B1, B2, . . . in the domain of µ that covers A.

Any R̄-valued set function µ can be used to create an outer measure µ∗ as
follows. Define µ∗∅ := 0; then for each A ∈ 2Ω, define

µ∗A := inf
∑
i

µBi

where the infimum is taken over all countable covers B1, B2, . . . for A. µ∗ is
called the outer measure induced by µ.

1.22 Verify that µ∗ is indeed an outer measure.

Any outer measure can be restricted to a measure on a certain subset of
its domain. If µ∗ is an outer measure, we say that a subset A is Carathéodory
measurable with respect to µ∗ if

µ∗A = µ∗ (A ∩B) + µ∗ (A ∩Bc)

for every B ∈ 2Ω.

ETheorem 4.1 (Carathéodory Construction Theorem, see Royden and Fitz-
patrick, 1988, Thm 17.8). Suppose µ∗ is an outer measure for Ω, and let A
denote its Carathéodory measurable sets. Then A is a σ-algebra, and (Ω,A, µ∗)
is a complete measure space.

It is implied here that µ∗ in the measure space is really the restriction of µ∗

to A.

Together, Exercise 1.24 and Theorem 4.1 provide a two-step process for
obtaining a measure from any R̄-valued set function µ: construct the induced
outer measure µ∗ then restrict it to its Carathéodory measurable subsets A.
The resulting (Ω,A, µ∗) will be called the Carathéodory measure space induced
by µ.

µ is an inner measure for Ω if it is a gauge with domain 2Ω that has the
following properties:

• it is superadditive for disjoint subsets,

• if {An} is a decreasing sequence of subsets and µA1 <∞, then µ
⋂
nAn =

limµAn,

• if µA =∞, then for every c ∈ R, there must be a subset B ⊆ A such that
µB ≥ c.

1.23 Let µ be a measure on (Ω,A), and let µ∗ be defined on 2Ω by

µ∗B := supµA

where the supremum is taken over all measurable subsets A ⊆ B.
Show that µ∗ is an inner measure.

1.24 Let µ be a measure on (Ω,A). Show that the induced outer measure
can be equivalently defined by

µ∗B := inf µA

where the infimum is taken over all measurable supersets A ⊇ B.

4.2 Completing a measure

There is a remarkable connection between the “possible” measure values of a
subset of Ω and the inner and outer measures defined in Exercises ?? and ??.

ETheorem 4.2 (see Bogachev, 2007, Theorem 1.12.14). Let µ be a measure
with domain A, and let µ∗ and µ∗ be the inner and outer measures induced
by µ. Let B ⊆ 2Ω be an arbitrary subset of Ω. There exists a extension µ̃ on
σ(A ∪ {B}) with µ̃ B = t iff t ∈ [µ∗B,µ

∗B].

In other words, for every B ∈ 2Ω the inner and outer measures derived from
µ provide the range of all possible measure values for B that are compatible with
out current state of knowledge. As a sanity check, notice from their definitions
that µ∗ and µ∗ agree with µ on its domain A, so Theorem 4.2 implies that all
extensions of µ are forced to assign the sets in A that measure value as well.
Of course, that much is true by definition of an extension, but it leads to a
follow-up question: are there any other subsets whose inner and outer measure
values are equal? Yes, there can be such sets, and they are easily characterized.

Any subset B ∈ 2Ω is called subnegligible if it has a negligible superset. If B
is also measurable then it must of course have measure zero by additivity and
non-negativity. Two subsets A,B ∈ 2Ω are called conegligible if their symmetric
difference is subnegligible. If the measure is not clear from context, one should
say µ-negligible and µ-conegligible. We will say that B is conegligible with a
collection A if it is conegligible some set in A.

It might seem awkward that a measure could be “agnostic” about a subne-
gligible set; going by our state of knowledge interpretation, isn’t it obvious that
subnegligible sets should have measure zero? Clearly every possible extension
must assign them measure zero. It follows that every B ⊆ Ω that is conegligi-
ble with a measurable set A must also be assigned a measure value of µA by
every possible extension of µ. Assigning B a measure value that disagrees with
A would require assigning positive measures to subsets of A∆B which is itself
subnegligible. Proposition 4.3 includes the converse as well: all of the subsets
of Ω with “forced” extension values are of this type.

Proposition 4.3. Let µ be a measure with domain A. If a set B ⊆ Ω is
conegligible with A then µ∗B = µ∗B. When µ∗B is finite then the converse
holds: µ∗B = µ∗B implies that B is conegligible with A.

1.25 Let B ⊆ Ω. Show that there exists a measurable superset A ⊇ B for
which µA = µ∗B. Show also that there exists a measurable subset
A ⊆ B for which µA = µ∗B.

1.26 Prove the converse direction of Proposition 4.3.

Given a measure µ with domain A, we know by Theorem 4.2 that we can
always extend µ to a domain that includes B by assigning B any desired number
between its inner and outer measure values. This assignment results in an
extension to σ(A∪ {B}) with any additional subsets’ measure values forced by
the choice for B. In this manner, any finite collection of subsets can be brought
into the domain of an extension of µ, one at a time. New inner and outer
measures need to be considered after each extension, as the range of possible
measure values of some the remaining subsets may become more narrowed.
Trying to construct an extension by assigning multiple sets simultaneously is a
trickier business. One needs to make sure that each assigned value is legitimate
even in the presence of all the other assignments.

Is it possible to extend the domain to all of the the sets that are conegligible
with A by simultaneously assigning each of them its “implied” measure value?
The possible ranges of the conegligible sets can’t be affected by any other as-
signment, by Proposition 4.3 and Theorem 4.2. We only have to worry that the
extension might need to pull in subsets that aren’t conegligible. But any such
worries are put to rest by Exercise 1.27.

1.27 Let µ be a measure with domain A. Show that the collection of
conegligible sets This collection includes A itself. is precisely the σ-
algebra generated by the union of the A with the subnegligible sets.

Therefore the extension to the conegligible sets is indeed legitimate. The
extension to the conegligible sets can also be seen as the automatic result of
the extension created by assigning the subnegligible sets measure values of zero.
This process is called completing the measure, and the new measure space with
the finer σ-algebra is called the completion of the original measure space. The
σ-algebra in the completion of (Ω,A, µ) is often denoted Ā or Ā(µ); it is called
the completion or µ-completion of A. Any measure space in which all subne-
gligible sets are measurable is called complete. Notice that this definition of
completeness is distinct from the metric space sense of the term; in particular,
this is not related to completeness the measure space’s Frechét-Nikodym metric
space — recall Exercise 1.21.

While completeness of a measure space and conegligibility is relevant for
various mathematical technicalities, one shouldn’t worry about it too much
in practice. Taking the completion has no effect on the measure algebra, for
instance. This realization might encourage you to consider measure algebras
the more primary concept in measure theory. Nevertheless there is value in
keeping both the measure space and measure algebra views in mind. My own
feeling is that one should freely apply a measure to any subset that it assigns an
“obvious” value to. This spirit is reflected in the next section and in Chapter ??;
we’ll continue this line of thinking in Section REF.

1.28 If you were paying close attention, you may have noticed that some
sets that we “know” to have infinite measure values may have slipped
through the completion process (see Proposition 4.3). Is there a
unique and well-defined extension that assigns these subsets measure
values of ∞?

4.3 Constructing a measure

1.29 Let I ⊆ R be a non-empty interval. Devise a countably infinite
collection of sets that partition I and are all within a translation of
each other. Consider a translation of any set to wrap around I if it
has points that go off the end.

The sets described in the solution to Exercise 1.29 are known as the Vi-
tali sets. An implication of Vitali’s discovery was that there is no translation-
invariant probability measure on [0, 1] that is well-defined for every subset in
2[0,1]. This fact is also a consequence of Proposition 2.5, but that more far-
reaching result was unknown at the time. If you assign all the Vitali sets the
same positive measure, then the measure of the full set [0, 1] is infinite, but if
you assign them all a measure of zero, then you have the zero measure. As in
set theory, mathematicians realized that they couldn’t be blasé about assuming
a measure is well-defined just because it can be easily described.

The induced Carathéodory measure turned out to be a vital tool in estab-
lishing that certain desired measures are well-defined. Given a premeasure µ,
if one can establish that the induced Carathéodory measure is an extension of
µ, then by the Carathéodory Construction Theorem the new measure’s domain
is at least as fine as the µ-completion of σ(A). When the domain of µ is a
semi-ring, the process is guaranteed to result in an extension.

ETheorem 4.4 (Carathéodory-Hahn Extension Theorem). If µ is a premea-
sure on a semi-ring A, then its induced Carathéodory measure extends µ to the
µ-completion of σ(A).

The condition that µ is σ-finite implicitly assumes thatA is able to countably
partition Ω. Another variant of this result is the Hahn-Kolmogorov Extension
Theorem which guarantees the existence of a measure extension of a premeasure
defined on an algebra. That is a weaker statement because all algebras are semi-
rings — see Section ??.

The following fact is useful for verifying that two measures are equal, and in
particular for establishing extension uniqueness results.

Theorem 4.5. Suppose A is a π-system, and µ1 and µ2 are σ-finite measures
with domain σ(A). Then µ1 and µ2 agree on A iff µ1 = µ2.

Any extension of a σ-finite premeasure must remain σ-finite, as the original
countable partition is still in the domain and still has finite measures of its
subsets. And because semi-rings are π-systems, Theorems 4.4 and 4.5 have an
immediate Corollary.

Corollary 4.6. If µ is a σ-finite premeasure on a semi-ring A, then its induced
Carthéodory measure is also σ-finite and is a unique extension to the completion
of σ(A).

Let’s return to the idea of a (premeasure, domain)-pair as encoding some
state of knowledge about the masses of subsets; we also spoke of extensions
as representing possible refinements in that knowledge. Taking this view, we
can interpret Corollary 4.6 as saying that if one knows the measure values on a
semi-ring, then one also implicitly knows the measure values on [the completion
of] the σ-algebra it generates — every possible refinement result in the same
measure values on that collection.

We will make use of Corollary 4.6 to define the Lebesgue measure in the next
section.

1.30 Use the π-λ Theorem (Theorem ??) to prove Theorem 4.5.

5 Lebesgue-Stieltjes measures

After Exercise 1.29, we realized that there is no possible translation-invariant
probability measure for [0, 1] that is well-defined on every subset. On the other
hand, our subsequent discussion covered the fact that a σ-finite premeasure
defined on a semi-ring can be uniquely extended to a measure on the completion
of the σ-algebra generated by that semi-ring. Now, we will put this technique
to use and define a translation-invariant measure for R that is also a probability
measure when restricted to [0, 1].

1.31 Show that the collection of half-open intervals {(a, b] : −∞ < a < b <
∞} is a semi-ring and that it generates the Borel σ-algebra on R.

The set function defined by

µ (a, b] := b− a

can be shown to be a σ-finite premeasure on the half-open intervals (Exer-
cises 1.32 and 1.33). Using the Carathéodory-Hahn Extension Theorem, we
extend this premeasure to its completion of the σ-algebra generated by the
half-open intervals (which is B(R), by Exercise 1.31). The resulting measure
is called the Lebesgue measure, (SIDENOTE: “Lebesgue” is pronounced luh-
BEG.) which we denote Leb(R). The restrictions of Lebesgue measure to [0, 1]
is denoted Leb[0, 1], and other restrictions are denoted likewise. This gives us
a measure that is translation-invariant on its domain and maps all intervals to
their lengths.

There’s a more general approach to defining measures on R via the semi-
ring of half-open intervals. If G : R→ R is any nondecreasing, right-continuous
function, then

µG(a, b] := G(b)−G(a) (4)

defines a measure on the µG-completion of B(R). Any measure that can be
defined in this way is called a Lebesgue-Stieltjes measure. “Stieltjes” is pro-
nounced STILL-chuss.

1.32 Verify that µG is indeed a premeasure on the half-open intervals. Are
Lebesgue-Stieltjes measures always σ-finite?

1.33 Is Leb(R) a Lebesgue-Stieltjes measure?

1.34 What is the relationship between G and atoms of µG.

1.35* Devise an uncountable set that is negligible with respect to Leb(R).
Prove that (R,B(R),Leb(R)) is not a complete measure space. Does
this argument hold for all Lebesgue-Stieltjes measures?

It turns out that the Lebesgue-Stieltjes measures are exactly the Radon
measure on R

EProposition 5.1. µ is a Lebesgue-Stieltjes measure iff it is a Radon measure
on R.

6 Taking drastic measures

Let’s return to our jar of coins example from the beginning of Section 4. At
last reckoning, the jar had five pennies, two quarters, and another eight “silver-
colored” coins (each of which is either a nickel or a dime). In the mathematical
model of this situation, the set of dimes is not in the domain of the (restricted)
counting measure. But that doesn’t mean we have no knowledge about the
number of dimes. We know that the set of dimes is nested between the empty
set and the set of silver-colored coins that aren’t quarters. These two measurable
subsets determine the inner measure value (0) and outer measure value (8) for
the set of dimes.

I apply this same reasoning to measure theory in general. In real-world
applications, measures are used to model the “masses” of subsets. I prefer to
think that the subsets outside of the measure’s domain do have masses that are
perhaps “unknown” to the measure space. What’s the alternative to this view?
Presumably, it is to believe that the other subsets just don’t have masses?
Maybe both of these views have some merit — potential problems with the
state of knowledge interpretation will be discussed below. To me that seems
like an awkward assumption for a model of reality to make. For example, do we
really need to worry about whether or not A is measurable in order to make the
“obvious” assertion that the mass of A is no greater than the mass of the closure
of A? Measure theory is supposed to help us model the world, but it seems to
me to be getting in the way of any reasonable treatment of non-measurable sets!

If we take the approach of assuming the subsets that aren’t in the domain
of µ do indeed have masses, we should readily assert that those masses are
between the inner and outer measure values assigned to them. Ideally, we’d
also keep track of the fact that any particular hypothetical realization of one
subset will limit the possible realizations of some of the other subsets. Here
we introduce a mathematical formalism that perfectly (and elegantly, in my
opinion) captures this line of reasoning. Not only will it more adequately handle
non-measurable sets according to the states of knowledge interpretation in real-
world applications, but it also produces a cleaner development of measure theory
by, in large part, severing our study of the behavior of premeasures from the
complications of measurability.

Recall that a gauge µ is called a premeasure if it is countably additive on
its domain A, and the measure of a set A ∈ A is that set’s image µA ∈ R̄. We
will call a premeasure self-consistent if there exists some extension of it to a
σ-algebra. By the Carathéodory Extension Theorem, every premeasure defined
on a semi-ring is guaranteed to be self-consistent. We also don’t have to worry
about purely atomic measures, as they always have extensions to 2Ω. Given any
set B ⊆ Ω, let Eµ(B) denote the set of every extension of µ to σ(A∪{B}). If µ is
self-consistent, then Eµ(B) is non-empty for every B ∈ 2Ω (by Theorem ??). On
the other hand, if µ isn’t self consistent, then clearly Eµ(B) is empty for every
B ∈ 2Ω. More generally, we also allow a collection of sets B as the argument:
Eµ(B) denotes the set of all extensions of µ to σ(A∪B). If Eµ(B) is non-empty,
we say that B is compatible with µ.

Given a premeasure µ with domain A and another collection of subsets
B ⊆ 2Ω, the drastic measure µB maps each B ∈ σ(A ∪ B) to the indexed
family {µ′B : µ′ ∈ Eµ(B)}. When µ is already a measure and has B in its
domain, the drastic measure value µ{B}B is just equal to the singleton {µB},
and furthermore, for any compatible B, µBB is equal to a constant indexed
family where each member equals µB.

Thus the concept of drastic measures represents a generalization of ordinary
measures that enlarges their domain to all subsets of Ω. Much of the value in
this approach comes from the point-wise statements it enables us to make. For
instance, suppose Ω is a topological space, and B ⊆ Ω. We can proudly compare
the drastic measure value of B with that of its closure:

µ{B,B̄}B ≤ µ{B,B̄}B̄. (5)

This statement is true as a point-wise inequality where the points are the indices
in the family indexed by Eµ({B, B̄}). Why? Because it’s true for every possible
extension of µ that is able to measure both B and B̄. In this way, any statement
that holds for measures of measurable sets is also true as a point-wise statement
for drastic measures of arbitrary sets. When B is incompatible with µ, then
every possible statement is vacuously true “point-wise,” because there aren’t
any points to check.

Typically, the B of interest is obvious from the expression or equation at
hand: it should be the collection of all the sets that “need to be measured.”
In (5), for example, of course {B, B̄} is the collection we want to use. So once
we’ve made it clear that we are working with drastic measures, we may as well
just state

µB ≤ µB̄. (6)

In this way, the convention of using drastic measures automatically let’s us
make all sorts of “obvious” statements that really don’t have anything to do
with measurability but rather with the nature of the things measure theory is
typically supposed to be modeling. In real-world modeling, we shouldn’t let our
limited knowledge about the measure values of specific subsets keep us from,
for example, asserting comparisons such as (6) which we should readily accept
regardless of whether the measure values of the two sets are known to µ.

I suppose my ornery tone in this section deserves some explanation. In my
few years of doing applied mathematics, measurability issues have often been
frustrating details in otherwise interesting and enjoyable questions. But in light
of the drastic measures approach, measurability is no longer an enemy to me; it
has become an ally. By the drastic measures approach, what I mean is pretending
that every set is measurable. All of the resulting claims are true as point-wise
statements (some perhaps vacuously so). Then, if desired, the ordinary theory
of measurability can be applied to answer follow-up questions: namely, the
measurability of a set ensures that its drastic measure (for any B) is constant
(by Theorem 4.2). That is very often nice to know, but it isn’t essential; indeed
as we’ve discussed it is valuable to be able to make point-wise statements when
the drastic measure isn’t constant, as this represents hypothetical knowledge.

6.1 Compatibility

One issue that some readers might find troubling is the possibility that Eµ(B)
can be empty. A central question here is whether the incompatibility phe-
nomenon fundamentally undermines our states of knowledge interpretation of
measure spaces. We begin this discussion by thinking more about the relation-
ship between Leb[0, 1] and the Vitali sets in that interval. Based on the inherent
symmetry of Lebesgue measure, we can tell that if its domain includes any one
of the Vitali sets, then it includes all of them and assigns them the same mea-
sure value. And we’ve seen that this isn’t possible, so these sets must not be in
the domain.

1.36 Determine the inner and outer measure values of the Vitali sets with
respect to Leb[0, 1].

Based on the solution to Exercise 1.36, we will interpret the Vitali sets in
terms of states of knowledge. The measures of the Vitali sets can be considered
unknown by Leb[0, 1], but they could be learned. There are states of knowledge
that include all the Vitali sets and are compatible with Leb[0, 1]. This is an
example of a more general phenomenon involving extending a measure to a
family of disjoint subsets.

EProposition 6.1 (see Bogachev, 2007, Thm 1.12.5). Let (Ω,A, µ) be a mea-
sure space. For any disjoint collection of subsets B, there exists an extension of
µ to σ(A ∪ B).

But on the other hand, atomless measures such as Leb[0, 1] have no well-
defined extensions to the power set (Proposition 2.5). Even extending to a
countable collection of additional sets can be problematic.

EProposition 6.2. Under the continuum hypothesis, there exists a countable
collection of subsets of [0, 1] for which there is no well-defined extension of
Leb[0, 1].

If one is willing to forego the axiom of choice or to deny the continuum
hypothesis, then the problems might be avoided, at least for Lebesgue measure.

EProposition 6.3 (Solovay, 1970). The existence of a collection of sets incom-
patible with Lebesgue measure is not provable in ZF set theory.

EProposition 6.4 (Carlson, 1984). If ZFC is consistent, then it remains con-
sistent with the statement that every countable collection in 2R is compatible
with Lebesgue measure.

In some cases, compatibility can be guaranteed. For instance, purely atomic
measures always have extensions to the power set; they pose no problem to
our interpretation. Any measure that isn’t purely atomic, however, does pose a
problem (in ZFC), based on Theorem 2.2 and Proposition 2.5.

The reader may draw his or her own conclusions at this point, but I will
briefly provide my thoughts on the matter. For some real-world systems, the
idea that certain subsets have no measure is so hard to stomach, that I’m
willing to reject it outright. I do so with an open-mind, however. This is, after
all, the same universe that turned out to be governed by relativity and quantum
mechanics!

Axiom 6.5 (Full Measurability Axiom). All subsets have a measure value.

In any real-world system for which one adopts the Full Measurability Axiom,
one has to conclude that the true measure must be purely atomic. However, even
with this axiom in effect, measures that aren’t purely atomic remain an essential
tool as they can be remarkably convenient approximations to the true measure.

What are the implications of this approach for using drastic measures? Of-
ten, we will feel more justified in assuming that a particular measure is purely
atomic, in which case, we don’t have to worry about it creating vacuous drastic
measures. And we won’t be philosophically troubled by the fact that atomless
measures represent “states of knowledge” for which there is no valid way to fill in
all the missing pieces. We do not take them literally, but rather as mathematical
fictions that can be convenient approximations. We will, however, sometimes
be concerned about whether various drastic measures they create are vacuous
or not. We’ve already seen a few conditions that are sufficient to tell us that a
drastic measure isn’t vacuous (Theorem 4.2 and Proposition 6.1) and another
fact that can sometimes guarantee that it is vacuous (Proposition 2.5).

6.2 Measures on product spaces

Given a countable (finite or countably infinite) collection of measure spaces
(Σ1,A1, µ1), (Σ2,A2, µ2), . . ., we can define a measure on sets in the product of
the Ai by

µ (ΠAi) = ΠµiAi (7)

By the Hahn-Kolmogorov Theorem, µ can be extended to the product sigma
field (and the extension is unique if µ1, µ2, . . . are all sigma finite). (SIDENOTE:
We denote the product measure of µ1 and µ2 by µ1⊗µ2.) Any µ that decomposes
as in (7) is called a product measure for Π(Ωi,Ai).

RESTARTING ...

Let (X1,A1), (X2,A2), . . . be measurable spaces, and let µ be a measure
defined on the product space. The marginal measure of µ on X1 is defined by

µ1A := µ (A× X2 × X3 × . . .)

for every A ∈ A1. The marginal measures of µ on the other Xi (or the product
space of any subset of the Xi) are defined likewise. A marginal measure can
also be thought of as the image measure of a projection onto a subset of the
coordinates.

Often, we start out with a measure µi in mind for each of the measurable
spaces (Xi,Ai). Then we can define a set function on the measurable rectangles
by

(
⊗
i

µi)(
⊗
i

Ai) :=
∏
i

µiAi. (8)

If there are only finitely many spaces under consideration, then this definition
is fine. Otherwise, one needs to have in mind a topology on (WHAT?) and
check that the infinite product converges. Recall that

⊗
iAi is the σ-algebra

generated by the measurable rectangles and that the measurable rectangles form
a semi-ring (Exercise REF).

1.37 Show that the set function defined by (8) is a premeasure.

By Theorem REF, there is a unique extension of the premeasure defined by
(8) to the product σ-algebra (and to its completion).

Any measure µ on a product space is called a product measure if there exist
{µi} for which (8) holds for every measurable rectangle; we call such a µ the
product of the {µi}.

1.38 True or false: a measure on a product space is a product measure iff
it is the product of its marginal measures.

EXTEND Lebesgue measure to Rd. - equals the hypervolume of a rectan-
gular prisms. - need to take completions after products

- Generalize to finite-dimensional Banach spaces - is “Haar measure” a fur-
ther generalization of this? - BUT Famously, there is no infinite-dimensional
Lebesgue measure! Make this an Exercise since it seems to have a short proof!

INTRODUCE independence here? or in the probability measures section.

POINT to the product spaces chapter.

- EXERCISE for product spaces: product of sigma-finite measures is sigma-
finite.

6.3 Decomposing complete measure spaces

Theorem 6.6 (Maharam’s Theorem). Every complete measure space is decom-
posable into ...

Above article briefly describes importance for Lp spaces. And the last sen-
tence of the above article says there’s an analogous decomposition statement
for Polish spaces. That result was extended to “localizable metric spaces” here:
IS that strictly an extension?

AN ISOMORPHISM between measure spaces is an invertible measure-
preserving function. (ACTUALLY the definition at the link below requires
measurability and measure-preserving of f−1 as well. BUT IS that automatic?
IF f is invertible, measurable, and measure-preserving, is f−1 also measurable
and measure-preserving? A GOOD EXERCISE, I think.)

6.4 Regular measures

Let (X,A) be a measurable space and T be a topology for X. A measure for
(X,A) is regular if the measure it assigns to any set in A is equal to the supremum
of the measures of all its compact measurable subsets and equal to the infimum
of the measures of all its open measurable supersets.

6.5 Standard measure spaces

USING BERCOVICI’s book “Measure and Integration”

how exactly is this stuff related to Maharam’s Thm?

EXERCISE: We define measurable subspace analogously to topological sub-
space, replacing the full set X by some subset Y ⊆ X and replacing the sigma
field’s sets by their intersections with Y. Show that a measurable subspace is
indeed a measurable space. - NEED TO show that the resulting intersections
are a sigma field.

Two measurable spaces are called isomorphic if there exists a measurable
(in both directions) bijection between them.

A measurable space is standard if it is isomorphic with a Polish space’s Borel
space. It can be shown that any measurable subspace of a standard measurable
space is also standard.

Theorem 6.7. Standard measurable spaces are isomorphic iff they have the
same cardinality, and all uncountable standard measurable spaces have the car-
dinality of the continuum.

Every finite measure on a Polish space is regular. (Kerr Prop A.19)

Berc Thm 11.9: Let (X,A) be a standard measurable space, and let A be any
set in A. Then there exists a Polish topology T for which A is clopen and B(T) =
A. Cor 11.10 - can fix a sequence of sets A1, A2, . . . instead. ARE EITHER of
these two important? Thm 11.9 implies... Cor 11.11 - Any measurable subspace
of a standard measurable space is also standard. (THIS IS also Cor A.14 in Kerr)

Two measure spaces are isomorphic if they have full-measure subspaces for
which there exists a measure-preserving and measurable (in both directions)
bijection. THIS IS CALLED almost isomorphic at another source - i like this
“strictly isomorphic” / “almost isomorphic” naming scheme better

IS This the same thing as “Borel isomorphic”?

The measure space (X,A, µ) is also called standard when (X,A) is a standard
measurable space.

“A sigma-finite measure space is isomorphic to a countable direct sum of
finite measure spaces...” Berc Thm 11.25 proof - not sure what definition of
isomorphic he’s using.

Kerr A.20: An atomless probability measure on a standard measure space
is isomorphic to Lebesgue measure on [0, 1].

DO I ALSO want to define its Lebesgue space as the completion of its Borel
space?

A measure space is standard if it is isomorphic to the Borel (LEBESGUE?)
space of R, of Z, or of a finite space.

- maybe standardness is a property of the measurable space - does it have
to do with the choice of measure as well?

Theorem 6.8. If (X,T) is a Polish space, then its Borel (OR maybe
LEBESGUE?) space is standard.

ANY chance this is actually iff? i.e. topological space is Polish iff its Borel
space is standard?

THIS way of defining things disagrees with some of the links below, but
comports more nicely with “standard probability space” theory.

(What’s the Borel space of Z or of a finite space? Presumably the singletons
are considered open sets.)

SEEMS LIKE THERE should be something about the space being complete,
as is assumed in the link below Seems like isomorphism mod 0 is important to
understand as well:

SOMETHING special about finite measures on standard Borel spaces (see
Standard Probability Space).

SPECIFICS about standardness of finite measure spaces (measure spaces
with finite measures).

Given a measure space (Ω,A, µ), one can define a pseudometric on the mea-
surable sets by the measure of their symmetric difference:

d(A,B) := µ (A∆B)

Called the measure pseudometric (or Frechet-Nikodym pseudometric). FOR
finite measure spaces, IT’S quotient is a complete metric.

EXERCISE? every countably generated sigma field is separable.

Interesting: a measure defines a metric on a sigma field. maybe worth
an exercise (e.g. show that it’s a metric.) The separability of the resulting
metric space defines “separability” of the measure space. IS this the thing that
determines whether the Lp spaces are separable??? (DOES NOT INCLUDE
L∞ - it is not separable in general - what’s required? Finite space probably.

The algebra generated by a class approximates the sigma algebra generated
by that class: given any A ∈ σ(S) and ε > 0, there exists a B ∈ α(S) such that
d(A,B) < ε. In other words, the algebra is a dense subset of the sigma algebra.
WARNING: The link initially only shows that this is true for finite measures.
One of the comments says that it holds for sigma finite measures and might
hold in general.

GENERAL TOPIC: generators

Often, we’re dealing with the image measure of a random vector, and we are
assuming various things about it’s codomain’s structure, e.g. it’s a Polish space.
Then this section’s results regarding the sample space’s structure are relevant.

Normed space of finite signed measures

INTRODUCE total variation norm here - use the supremum norm definition!

SPACE M(Ω,Σ) of all finite signed measures on (Ω,Σ).

- important: the finite signed Borel measures comprise the dual space of
C(T) for any topological space T.

Theorem 6.9. Let T be a compact topological vector space. Given any con-
tinuous linear functional l ∈ C(T)′, there exists a finite signed measure γ ∈
M(T,B(T)) such that for every f ∈ C(T),

l(f) = γ f (9)

Conversely, every γ ∈M(T,B(T)) is a continuous linear functional via (9).

FIND A GOOD SOURCE

EXERCISE: Show that if a collection of finite signed measures is separable
in total variation norm, then there exists a measure that dominates all of them.
ALSO, the existence of a FINITE dominating measure might be really useful in
some cases! That’s true when the (X,A) is a Polish space!

7 Probability measures and expectations

If µΩ = 1, then µ is called a probability measure, and the measure space
is called a probability space, Ω is called a sample space, the sets in Σ are
called events, the term almost sure is used rather than almost everywhere,
and the µ integral is called the expectation. In this context, any measurable
function from Ω to another measurable space is called a random element;
if that codomain is a topological vector space with its Borel σ-algebra,
then the random element is also called a random vector. In particular, an
R-valued random vector is also called a random variable. The image measure of
any random element is called its distribution; it is a probability measure as well.

8 MISC

terminology: essential or µ-essential

Every atom in a standard measure (Borel?) space contains a singleton atom.
(SIDENOTE: This singleton clearly must have the same measure as the atom
you started with.) Is this because the singletons are all included in standard
Borel spaces?

Sobczik-Hammer Decomposition Theorem (e.g. Theorem 5.1 in CITE) Or
a weaker statement: Corollary 2.6 at SEEM TO be the same as Maharam’s
theorem

8.1 Standard probability spaces

Definition: isomorphic to a sum of Lebesgue measure on an interval and count-
able purely atomic measure.

Theorem 8.1. Let (Ω,Σ,P) be a probability space and let f : Ω → Rd be a
measurable function that is both injective and generating. Then (Ω,Σ,P) is a
standard probability space iff f(Ω) has full [image] measure.

(SIDENOTE: In this theorem, d is allowed to be any number in {1, 2, . . . ,∞};
notice that ∞ is included.)

The completion of any Borel measure on a Polish space is a standard prob-
ability measure. - Rd with any d ∈ {1, 2, . . . ,∞} is a Polish space. - another
Polish space: C[0,∞), the space of continuous functions from [0,∞) to R with
topology of local uniform convergence.

Product of a countable collection of standard probability spaces is stan-
dard. - going the other direction, any measurable (and non-negligible) subset
of a standard probability space has conditional measure that is also a standard
probability space.

(TELLS us that any Borel probability measure on Rd with d ∈ {1, 2, . . . ,∞}
is a standard probability measure as well.)

Probability measure on a standard Borel space is a standard probability
measure.

FIGURE ALL THIS OUT!
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