
Inner Product Spaces

So far in this chapter, we have studied sets with various levels of structure.
We motivated that discussion by a desire to quantify how different any two
elements of a set are from each other, leading us to define the concept of a
divergence. Stronger assumptions give us a metric. When the underlying set is
a vector space, we added yet more requirements to define a norm. Finally, in
this section we will introduce another quantity that some vector spaces have for
relating their elements: an inner product. Rather than telling us how different
its arguments are, however, an inner product is more related to the extent to
which its arguments are “pointing in the same direction.” However, as we’ll
see, an inner product can always be used to define a norm, making such vector
spaces more structured than normed spaces.

Inner product spaces come up in essentially every branch of mathematics,
and the extensive theory from functional analysis provides us with a powerful
toolbox for working with them. This section will give an overview of the basics
of that theory, while focusing on three main ways that it connects to our
study of probability. First, one of the Lp spaces (p = 2) is an inner product
space, so measurable functions in L2 inherit the rich inner product theory
that we will learn about. Second, recall that because Lp spaces assign a norm
to probability densities, they can be thought of as providing a norm for the
space of probability measures. In this way, L2 also provides an inner product
structure on the space of probability measures (IS THIS REALLY what i
wanted to say here?). Finally, we will consider the special case of Bochner
expectation in which the range of the random vector is an inner product space.

REVISE THIS INTRO BECAUSE THE original plan was split into three
separate sections.

1 Definitions and basics

1.1 Inner product space

An inner product(SIDENOTE: Intuitively, you should think of the concept of
inner product as a generalization of dot product.) on a real vector space V is
a mapping from V × V to R such that for any x, y, z ∈ V and α, β ∈ R, the
following following three conditions are satisfied:

• Symmetry: 〈x, y〉 = 〈y, x〉 (SIDENOTE: If you want to worry about
complex vector spaces, you need to use a slightly more general definition
of inner product as a mapping to C. The “symmetry” property is replaced
by “conjugate symmetry”: 〈x, y〉 equals the complex conjugate of 〈y, x〉.)

• Linearity: 〈αx + βy, z〉 = α〈x, z〉 + β〈y, z〉 (SIDENOTE: To be more
precise, this condition should be called “linearity in the first argument.”
However, real inner products are symmetric, so linearity in the first ar-
gument implies linearity in the second argument as well. For complex
inner products, one can use the conjugate symmetry property to see how
a linear expression in the second argument works.)

• Positive definiteness: 〈x, x〉 ≥ 0 with equality iff x is the zero vector

An inner product space is a vector space along with an inner product on its
elements. (SIDENOTE: A more general treatment of inner product says that
it is a mapping to the vector space’s scalar field. In this book, we will limit
ourselves to real vector spaces and thus real inner products.)

1.2 Example

As a prototypical example, the vector space Rn along with the familiar
dot product constitute an inner product space, with 〈x, y〉 := x′y. This
is known as Euclidean n-space. (SIDENOTE: Notice that this includes the
real numbers (n = 1); the product operation constitutes an inner product on R.)

In fact, any positive definite n × n [real symmetric] matrix M provides us
with an inner product on Rn. Simply define 〈x, y〉 := x′My. Notice that the
ordinary dot product is the case in which M is the identity.

1. Show that 〈x, y〉 := x′My is indeed an inner product.

This example demonstrates that a single vector space can have multiple inner
products defined on it.

1.3 Inner product norm

Any inner product can be used to define a norm by

‖x‖ :=
√
〈x, x〉 (1)

Of course, we need to verify that this quantity does indeed meet the norm
conditions.

2. Consider ‖x‖ as defined in (1); recall the definition of a norm from (REF
SECTION). First, explain why ‖x‖ will be a finite real number. Then, we
need to confirm three additional conditions to establish that it is truly a
norm. Show that it has absolute homogeneity and that it separates points.
(To finish proving that this is a norm, you will show that it satisfies the
triangle inequality in Exercise (NUMBER).)

Every inner product space can also be considered a normed space by using its
inner product norm. Whenever we use the norm notation in the context of
an inner product space, we will be referring to the inner product norm unless
otherwise specified.

Although every inner product can be used to define a norm, it should be
noted that not every norm comes from some corresponding inner product. One
common way to prove that a particular norm doesn’t correspond to an inner
product is to identify a particular pair of vectors doesn’t satisfy the parallelogram
equality.

3. Show that any inner product norm has the parallelogram equality:

‖x+ y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2)

Why do you think it’s called the parallelogram equality?

When a norm does correspond to an inner product, that inner product can be
recovered in terms of the norm by the polarization identity.

4. Prove the polarization identity (for real inner product spaces):

〈x, y〉 =
1

4
(‖x+ y‖2 − ‖x− y‖2)

1.4 Cauchy-Schwarz inequality

The following theorem gives the Cauchy-Schwarz inequality, an essential tool
that we will use a number of times in the course of this book.

Theorem 1.1 (Cauchy-Schwarz inequality). Let x and y be two vectors in an
inner product space. Then

|〈x, y〉| ≤ ‖x‖‖y‖

You will prove this in Exercise (NUMBER).

1.5 Orthogonality

Using an inner product, we can define angles between vectors by the relationship

cos θ =
〈x, y〉
‖x‖‖y‖

(2)

To make sure this θ is well-defined, we need to know that the right-hand side
is in [−1, 1]. The Cauchy-Schwarz inequality tells us that the absolute value of
the numerator is bounded by the denominator, so indeed this definition works.
Thinking in terms of angles can be more intuitive in many cases. (SIDENOTE:
Given any x and y, infinitely many values of θ will satisfy (2). We will prefer
the smallest positive solution, which will lie in [0, π].)

When 〈x, y〉 = 0 (and consequently θ = π/2), the vectors x and y are said to
be orthogonal (denoted x ⊥ y), a concept that generalizes the familiar notion
of “perpendicular” vectors in Euclidean space. If x is orthogonal to every y in
a set S, then we say that x is orthogonal to S (x ⊥ S). If every pair of vectors
in S is orthogonal, then we call S orthogonal as well. If in addition to being
orthogonal, all the vectors in S have unit norm, then we call S orthonormal.

5. Show that an orthonormal set is linearly independent.

6. Show that the inner product of any vector with the zero vector is zero.

7. Prove the Cauchy-Schwarz inequality (Theorem 1.1). [Hint: start by ex-
panding ‖x− y‖2 for unit vectors x and y.] When is equality achieved?

8. Use the Cauchy-Schwarz inequality to compare a vector’s L1 norm to its
L2 norm.

9. Prove that the triangle inequality holds for the norm induced by an inner
product.

10. Show that the Pythagorean theorem is true for any Hilbert space.

11. Prove that every inner product is continuous by showing that if xn → x
and yn → y, then 〈xn, yn〉 → 〈x, y〉.

12. Assume 〈·, ·〉 is a symmetric, linear mapping from V × V to R that is also
positive semi -definite. Show how to construct a true inner product on
equivalence classes of V .

1.6 Orthonormal basis

With an inner product structure, we can now introduce a special type of
“basis.” An orthonormal basis is an orthonormal set whose linear span is dense
in the inner product space. (SIDENOTE: Recall that the linear span of a set
of vectors is the set of all finite linear combinations of those vectors.) Note
that in general this is not a Hamel basis, because a given vector in the inner
product space can’t necessarily be represented as a finite linear combination
from the orthonormal basis. But it can be approximated arbitrarily well by a
finite linear combination from the orthonormal basis. When an orthonormal
basis is countable, it is a Schauder basis.

Let H be an inner product space with an orthonormal basis B. The set of
inner products of a vector x with the basis vectors {〈x, b〉 : b ∈ B} are called
the Fourier coefficients of x with respect to B. A remarkable fact is that any
vector only has countably many non-zero Fourier coefficients (Kreyszig Lemma
3.5-3); let Bx be the countable set indexing the basis vectors that produce non-
zero Fourier coefficients for x. It can be shown that x is equal to the countable
summation

x =
∑
i∈Bx

〈x, bi〉bi (3)

Recall from (section on Schauder basis) what this means. The the norm
between x and the summation goes to zero as you add terms.

In fact, knowing that {bi : i ∈ Bx} is a Schauder basis, it is easy to see
that the inner products must be the coefficients {xi : i ∈ Bx}, as demonstrated
below. (SIDENOTE: This is why the inner products are called the Fourier
coefficients.)

〈x, bj〉 =

〈∑
i

xibi, bj

〉
=

∑
i

xi〈bi, bj〉 recall 〈bi, bj〉 = 1 when i = j, zero otherwise

= xj

Understanding that xj = 〈x, bj〉, we express (3) more simply as

x =
∑
i

xibi

This is useful if you want to find the representation of x with respect to
{bi : i ∈ Bx}. You can find each coefficient separately, without making any
reference to the others.

We can also derive a more concrete representation of inner products in H,
which is 〈x, y〉 =

∑
i xiyi, where in the sum, i has to range over Bxy := Bx ∪By

which is countable. That is, the inner product is equal to sum of the products
of the vectors’ non-zero Fourier coefficients.

〈x, y〉 =

〈∑
i

xibi,
∑
j

yjbj

〉
=

∑
i,j

xiyj〈bi, bj〉 valid because inner product is continuous

=
∑
i

xiyi 〈bi, bi〉︸ ︷︷ ︸
1

+
∑
i 6=j

xiyj 〈bi, bj〉︸ ︷︷ ︸
0

=
∑
i

xiyi (4)

This fact is called Parseval’s identity. In the finite dimensional case, we call (4)
the dot-product. Note that any choice of orthonormal basis is valid; in some
cases, one particular choice is more convenient than others. (CITE Pollard and
Kreyszig)

Parseval’s identity also shows us that the squared norm of a vector is just
the sum of its squared non-zero Fourier coefficients.

‖x‖2 := 〈x, x〉

=
∑
i

x2i (5)

For a countable orthonormal set S in general (that isn’t necessarily an orthonor-
mal basis), we have Bessel’s inequality :

‖x‖2 ≥
∑
i∈S

x2i

where the xi are the inner products of x with the vectors in S.

COVER Gram-Schmidt here. OR if I’ve already covered it in Chapter 0,
then point out that it extends to general Hilbert spaces.

INCLUDE SOME EXAMPLES from Kreyszig section 3.4 and 3.5 (including
Trigonometric series).

I SHOULD use different notations for inner product spaces (H) and Hilbert
spaces (H). And likewise for normed spaces (B) and Banach spaces (B).

2 Hilbert spaces

Again, completeness turns out to be a crucial property for some aspects of
the theory of inner product spaces. When we studied normed spaces, we gave
complete normed spaces a special name: Banach spaces. Likewise, complete
inner product spaces (SIDENOTE: To be clear, this completeness must be with
respect to the inner product norm.) have their own special name: Hilbert spaces.

Recall from (CITE from the normed spaces section), that all finite-
dimensional normed spaces are complete. Because inner product spaces are
normed spaces, all finite-dimensional inner product spaces are complete.
Likewise (CITE section or theorem) tells us that a subspace of a Hilbert space
is complete iff it is closed.

Any inner product space can be completed (CITE Kreyszig page 139). That
is, given an inner product space G, there exists a Hilbert space H for which G
is dense in H. This completion is unique up to isomorphism.

In the context of inner product spaces, an isomorphism is a bijective linear
operator T that preserves inner products: 〈Tx, Ty〉 = 〈x, y〉. Because the
inner products determine the norms, any inner product space isomorphism
is also a normed space isomorphism. They are identical as inner product spaces.

Any [non-trivial] Hilbert space H has an orthonormal basis. In fact, every
orthonormal basis in H has the same cardinality, which is called the Hilbert
dimension of H. (Kreyszig page 168) (SIDENOTE: The trivial Hilbert space
{0} is defined to have Hilbert dimension zero.) A remarkable fact about
Hilbert spaces is that, in a sense, there “aren’t very many” of them: all Hilbert
spaces of the same cardinality are isomorphic to each other. (SIDENOTE: This
includes infinite cardinalities, i.e. there is one countably infinite Hilbert space,
one Hilbert space with the cardinality of the reals, etc.)

Recall that for Banach spaces, existence of a Schauder basis implies separa-
bility, but not vice versa. For Hilbert spaces, however, these two properties are
equivalent: a Hilbert space has a countable orthonormal basis iff it is separable.
(Kreyszig 3.6-4)

(WHY is HAVING A countable orthonormal basis is equivalent to having a
Schauder basis for Hilbert spaces? Make this an exercise if it’s easy.)

Let’s return to our prototypical inner product space example. REVISIT
Euclidean space Rn to point out that it is complete (i.e. a Hilbert space) -
easy to prove? - if so, do it or make it an exercise. And because it is a finite-
dimensional normed space, it is also separable.

2.1 Orthogonal projection

Recall (CITE section) that we defined the divergence between an element x and
a [non-empty] set S by

D(x, S) := inf
y∈S

D(x, y)

It is often useful to know whether or not there is some y ∈ S that actually
achieves this infimum divergence, and if so, whether or not it is the only one.
(SIDENOTE: One might, for instance, need to select an element from S to use
as an approximation for x.) This question is called “existence and uniqueness
of the minimizer.” It is easy to imagine situations in which existence and
uniqueness fail. For instance, if S is a sphere centered at x, then every point
in S is the minimizer. On the other hand, if S is the complement of a closed
ball centered at x in Euclidean space, then no element in S achieves D(x, S).
When there is a unique minimizer, we will call it the projection of x onto S.
(SIDENOTE: POINT OUT that “affine projections” are a thing too, so be
careful with terminology.)

(WILL the above discussion already have happened in a previous section
on divergences or examples of divergence spaces?)

For inner product spaces, the divergence in question is the inner product
norm of the difference between vectors. The following result is central.

Theorem 2.1 (Orthogonal projection). Given any x in an inner product space
and a [non-empty] complete convex subset C, there exists a vector xC ∈ C
that is the unique projection of x onto C. (Kreyszig Thm 3.3-1) (SIDENOTE:
This result is not true for normed spaces in general.) It is characterized by
〈x − xC , y − xC〉 ≤ 0 for all y ∈ C. In particular, if C is a subspace (and
thus a Hilbert space), then x − xC is orthogonal to C. (Kreyszig Lemma 3.3-2
and Rychlik Theorem 1) (SIDENOTE: In the case that C is a subspace, the
projection xC is often called the orthogonal projection of x onto C.)

(HOW WOULD ONE SHOW the part of this theorem about characterizing
a projection? Maybe proof by contradiction. If there is a y ∈ C such that the
inner product is positive, then PROBABLY that y has a smaller distance from
x than xC does. WORK THIS OUT.)

To prove the last part of Theorem (2.1), one should first show that there
exists an xC ∈ C such that x−xC is orthogonal to C. Then by the Pythagorean
identity, for any y ∈ C

‖x− y‖2 = ‖x− xC‖2 + ‖xC − y‖2

The first term doesn’t depend on our choice of y; the best we can do is to
choose y to minimize the second term. So the choice of y ∈ C minimizing
‖x − y‖2 is y = xC . (SIDENOTE: Because squaring is a monotonically
increasing transformation on the non-negative reals, minimizing a squared
norm is equivalent to minimizing a norm.)

When C is a complete subspace, the fact that x − xC is orthogonal to S
is often used to find xC . (IN THE CONVEX [not-necessarily-subspace] case,
x − xC is orthogonal to a supporting hyperplane of S, right? Along with the
Pythagorean inequality? This could be an exercise if it’s easy enough.)

13. Let x and y be vectors in an inner product space H, and let C be the span
of {x}. Is there a projection of y onto C? If so, find it.

(ANOTHER EXERCISE: Rn projection matrix - derive M(M ′M)−1M ′.
AND some of the useful facts about projection matrices - e.g. projection iff
symmetric and idempotent. OR will some of this be covered in the Algebra
section from Chapter 0? I COULD just state in Chapter 0 that much of it will
be put off until it can be covered more generally, even if I have to go ahead
and state some of the results.) In light of Exercise (NUMBER), we see that
the Fourier coefficients of a vector are its projections onto the spans of the
orthonormal basis vectors.

For any set C, its orthogonal complement, denoted C⊥ is the set of all vectors
that are orthogonal to C. It is easy to see that C⊥ is closed under linear
combination and is thus a subspace. It can also be shown that C⊥ is a closed
set; so if the context is a Hilbert space, then C⊥ is complete as well. In that
case, we know that the orthogonal projection xC⊥ exists. In fact,

Theorem 2.2 (Hilbert space). If H is a Hilbert space and C is a complete
subspace, then any x ∈ H is the sum of its projections onto C and C⊥:

x = xC + xC⊥

This tells us that H = C⊕C⊥. (Kreyszig Thm 3.3-4) (SIDENOTE: POINT
to DIRECT SUMS coverage in Chapter 0 - Kreyszig page 146.)

ORTHOGONAL projection operator (Kreyszig pages 147-148) - exercise:
show bounded and linear. NOTATION: projCx

2.2 Representations of inner products

Let’s start this section with an exercise to warm up.

14. Consider an inner product 〈·, y〉 with one of the arguments fixed to be
some particular vector y. Show that this is a bounded linear functional.

So any fact that we know for bounded linear functionals also holds for inner
products with one fixed argument.

15. Show that if 〈x, y1〉 = 〈x, y2〉 for all x, then y1 and y2 must be the same
vector.

This tells us that each vector produces a different bounded linear functional.

Amazingly, it turns out that for Hilbert spaces, the converse of this is also
true. Every bounded linear functional is an inner product with one fixed argu-
ment.

Theorem 2.3 (Riesz-Fréchet representation theorem). Let f be a bounded lin-
ear functional on a Hilbert space H. Then

f(x) ≡ 〈x, y〉

for some y ∈ H. This y is uniquely determined by f , and ‖y‖ is equal to the
operator norm of f .

(CITE Kreyszig Theorem 3.8-1 and point to him for the proof.) This result
provides a useful characterization of the dual space of a Hilbert space and shows
that any Hilbert space is isomorphic to its own dual space.

16. In the context of Theorem 2.3, show that ‖f‖ = ‖y‖, and prove that y is
unique.

A similar result for bilinear forms is also worth knowing. (MAKE sure
bilinear form and quadratic form are defined in the Algebra section of Chapter
0. Refer to that section here.) A bilinear form f whose arguments belong to
normed spaces (SIDENOTE: Recall that the arguments of a bilinear form don’t
have to belong to the same vector space.) is called a bounded bilinear form if
|f(x, y)| ≤ c‖x‖‖y‖ for some c ∈ R; the smallest such c is the bilinear form’s
norm. (SIDENOTE: One can verify that this satisfies the defining properties of
a norm, but we will omit the details.) Similarly to linear functionals, this norm
has a more straight-forward representation:

‖f‖ = sup
‖x‖,‖y‖=1

|f(x, y)|

We can see that any inner product is a bounded bilinear form. The bilinearity
comes from the linearity and symmetry defining an inner product. The bound-
edness (with operator norm 1) is a direct observation of the Cauchy-Schwarz
inequality. We can generalize this idea in a way that allows the bilinear form
arguments to come from different spaces. Let H be an inner product space, B
be a normed space, and T be a bounded linear operator from B to H. Then
〈T ·, ·〉 is a bounded bilinear form with an argument from B and an argument
from H. The bilinearity comes from the bilinearity of inner products along
with the linearity of T . The boundedness comes from Cauchy-Schwarz and the
boundedness of T : for x ∈ B and y ∈ H,

|〈Tx, y〉| ≤ ‖Tx‖‖y‖
≤ ‖T‖‖x‖‖y‖

Thus every bounded linear operator used within an inner product gives us a
bounded bilinear form.

Conversely, for Hilbert spaces, every bounded bilinear form corresponds to
using some bounded linear operator within the inner product.

Theorem 2.4 (Riesz representation theorem). Let H1 and H2 be Hilbert spaces
and f be a bounded bilinear form mapping from H1 ×H2 to R. Then

f(x, y) ≡ 〈Tx, y〉

where T is a bounded linear operator from H1 to H2. T is uniquely determined
by f and their operator norms are equal.

For a proof of this result, see Kreyszig Theorem 3.8-4 (CITE). (SIDENOTE:
By symmetry, the roles of H1 and H2 can be interchanged.)

(SIDENOTE: There is some disagreement about the names of these two
theorems, along with other related “Riesz representation theorems.”)

2.3 Reproducing kernel Hilbert spaces

Let H be a Hilbert space of real-valued functions on a set X . (SIDENOTE: An
element h of any finite-dimensional or countable-dimensional Hilbert space can
be thought of as a function mapping from X = {1, 2, . . .} to the coordinates of h
with respect to some basis.) Then a bivariate function K mapping X ×X → R
is called a reproducing kernel (SIDENOTE: Unfortunately, the word “kernel”
has quite a number of different uses in mathematics. Don’t strain yourself too
much trying to make sense of it!) of H if it satisfies the following two properties:

• For every x ∈ X , the function kx := K(·, x) is in H.

• For every x ∈ X and h ∈ H, point evaluations of h are equivalent to taking
inner product with the the corresponding kernel functions: h(x) = 〈h, kx〉.

If a Hilbert space has a reproducing kernel, it is called a reproducing kernel
Hilbert space (RKHS). It can be shown that the reproducing kernel of an RKHS
is unique.

Let’s see another important characterization of RKHSs.

Theorem 2.5. H is an RKHS iff for every x ∈ X , the point evaluation func-
tional Lx is a bounded functional on H.

Proof. Assume H has a reproducing kernel K. Then we can show boundedness
of the point evaluation functional by using the Cauchy-Schwarz inequality.

|Lx(h)| = |h(x)|
= |〈h, kx〉|
≤ ‖h‖‖kx‖

Recall that for any x, the function kx is in H and so must have finite inner
product norm ‖kx‖. So for any x, the operator norm of Lx is ‖kx‖.

Conversely, assume Lx is bounded (SIDENOTE: Recall also that point eval-
uation is a linear functional - CITE section.) for every x ∈ X . By Riesz-Fréchet
(Theorem 2.3), there exists some gx ∈ H such that Lx(h) = 〈h, gx〉. Because
Lx(h) = h(x), and because such a gx exists for any x ∈ X , this g(·) satisfies the
definition of a reproducing kernel for H.

Recall that all linear functionals on finite-dimensional normed spaces are
bounded. So we can see that any finite dimensional Hilbert space must be an
RKHS (with “point evaluation” corresponding to finding a coordinate with
respect to some basis (SIDENOTE: See the discussion in CITE SECTION -
from “examples of divergence and metric spaces”)).

In fact, we can guarantee that an even larger set of Hilbert spaces are
RKHSs. Any separable Hilbert space has a countable basis; define π1, π2, . . .
to be the coordinate functionals (each mapping H → R) with respect to
some particular countable basis. Coordinate functionals are bounded linear
functionals (see exercise NUMBER - from Bochner expectation or covariance
section), and they are also the point evaluation functionals when h ∈ H are
considered as functions from {1, 2, . . .} to R. So any separable Hilbert space is
an RKHS —- EMBEDDED IN SOMETHING???

NEED TO CLARIFY the RKHS is a subspace in a separable Hilbert space
(which is of course also a RKHS).

BUT THIS SITUATION is still sometimes true in uncountably infinite di-
mensional cases - THAT’s the point of RKHS - the spaces in some ways continue
to behave like Euclidean spaces.

To better understand RKHSs, let’s start by thinking about them in finite
dimensions. Let V ⊆ Rn be a vector subspace with an inner product defined
on it. In finite dimensions, point evaluation means finding a coordinate, so the
kernel vectors must be defined by

e′iv = 〈v, ki〉

We know from our discussion above that this is satisfied by a unique ki ∈ V .
We can represent the kernel K as the n × n matrix of these column vectors
(k1, . . . , kn), and K(i, j) means e′iKej . Interestingly, in the finite-dimensional
case, there are two other definitions of the reproducing kernel of (V, 〈·, ·〉) that
are equivalent to the original definition.

• The column space of K equals V , and 〈kj , ki〉 = Kij .

• K = u1u
′
1 + . . .+ uru

′
r for any orthonormal basis u1, . . . , ur for V .

(POINT READER to the paper that verifies these.) Notice that the second
definition makes it clear that K is symmetric. The third definition tells us that
K must be psd, because any a′Ka is a sum of squares.

17. Consider the Mahalanobis inner product 〈u, v〉 := u′Mv for some posi-
tive definite M ∈ Rn×n. Find the kernel K for this inner product space
(Rn, 〈·, ·〉).

In fact, given any n, every Hilbert space H living in Rn has a unique kernel
KH ∈ Rn×n. Likewise, every psd matrix in Rn×n is the kernel of a unique
Hilbert space in Rn. Thus, there is a one-to-one correspondence between psd
matrices and Hilbert spaces of the form (Rn, 〈·, ·〉). So any question regarding
one of the types of objects can be transformed into a question regarding
the other type, and sometimes that transformation makes the question more
manageable.

In infinite-dimensions - does this mean every psd function on X is the kernel
of some Hilbert space on RX ? (NEED to define psd function in a general sense
- presumably a symmetric bivariate function on the vectors X ×X → R that is
non-negative when its arguments are equal and that takes (0, 0) to zero.)

Kernel as covariance matrix - extends to countably infinite matrix for
stochastic processes.

emphasize isomorphism between kernels and RKHSs. SOMETIMES trans-
forming from one context to the other is useful.

THEREFORE EVERY inner product on Rn is a Mahalonobis inner product!
IN FACT, all RKHSs take a generalization of the Mahalanobis inner product
form, with K−1 taking over the role of Q.

embedding - creating a higher dimensional space with specified distances
between points.

3 Examples

REVISIT EXAMPLES FROM BANACH SPACE section (credit Kreyszig for
these examples)

- prove that they are inner product spaces? - include L2(µ). (Point out
that Holder’s inequality implies the Cauchy-Schwarz inequality in this case.
But of course, we already have the Cauchy-Schwarz inequality because it’s an
inner product space. So Holder’s inequality could perhaps be thought of as a
generalization of Cauchy-Schwarz from L2(µ) to Lp(µ).) - VARIANCE (and a
generalization) - also define standard deviation. - any example from previous
sections that is an inner product space should be shown again. - give an example
of a normed space that is not an inner product space and say how it can be
proven (parallelogram equality).

- point out completeness and separability or lacks thereof

18. Draw a Venn diagram to show the relationships among the following: inner
product spaces, normed spaces, Hilbert spaces, metric spaces, topological
spaces, sets, Banach spaces, complete metric spaces, divergence spaces,
and complete divergence spaces.
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