
Topological Spaces

We begin this chapter with a glimpse at a type of space with very little struc-
ture. It turns out that many familiar concepts about subsets of real numbers
continue to make sense in a much more abstract setting. And in many cases,
their properties and relationships are actually more straightforward once we’ve
stripped everything down to the bare essentials.

- LEADS to convenience in dealing with [divergence and] metric spaces.

- REMARKABLE similarities with aspects of measure theory (compare
topologies to sigma fields and continuity with measurability).

1 Topologies

MOST OF THIS STUFF SHOULD GO IN chapter 0-1

Given a set Ω, a collection T of subsets is called a topology for Ω if it satisfies
the following three conditions.

• It contains the full set Ω.

• It is closed under union. (SIDENOTE: Realize that this includes uncount-
able unions. It also includes the trivial union of no sets, which results in
the empty set.)

• It is closed under pair-wise intersection. (SIDENOTE: By induction, it
follows that a topology is also closed under finite intersection.)

The pair (Ω,T) is called a topological space. (SIDENOTE: Any set “automat-
ically” has two topologies. One is {∅,Ω}, which is called the trivial topology.
Another is the power set 2Ω, which is also called the discrete topology.) The
elements of Ω are called points, and the sets in T are called the open sets.
(SIDENOTE: For the moment, don’t rely too much on your familiar intuitions
about what “open” means in the context of, for instance, real intervals. (In-
spired by that intuition, we’re setting out to establish a body of much more
general results.) In topological spaces, a set being open just means that it is in
the topology. Although, we’ll see that when additional structure is present this
“openness” typically does coincide with your intuition.)

1. Is an intersection of topologies also a topology? What about a union of
topologies?

2. A pair (Ω0,T0) is a topological subspace of the topological space (Ω,T) if
Ω0 ⊆ Ω and the sets in T0 are defined to be the intersections of Ω0 with
the sets in T. Explain why a topological subspace is a topological space.

It might be helpful for the reader to review Section REF for the definition
of topology along with a few properties it has in common with other pavings.

2 Topological spaces

A topological space is a set Ω along with a topology of subsets T . Here we will
define a barrage of terms that categorize the points and sets of (Ω, T ).

A neighborhood of x ∈ Ω is any set that contains an open set containing
x. The neighborhood system of x (denoted N(x)) is the collection of all its
neighborhoods. (SIDENOTE: Analogously, one can also refer to a neighborhood
or the neighborhood system of a set.)

A set is closed if its complement is open. It follows that a set is open if its
complement is closed.

3. Show that an intersection of closed sets is closed.

Given a set S, there are a number of ways of categorizing the points in Ω
with regard to their relationship with S. The interior of S (denoted So) is the
union of all open subsets of S. The closure of S (denoted S̄) is the intersection
of all closed supersets of S. From the definitions, it is clear that So ⊆ S ⊆ S̄.
The boundary of S (denoted ∂S) is the symmetric difference S̄\So. The ex-
terior of S (denoted Se) is the complement of S̄. Together, any set’s interior,
boundary, and exterior partition the space Ω. (SIDENOTE: How do we know
they’re a partition? Because the boundary is defined in a way that excludes the
interior. Then the exterior is defined as everything that’s left over.)

4. Show that x ∈ So iff S contains a neighborhood of x.

5. Show that x ∈ Se iff Sc contains a neighborhood of x.

The boundary is the complement of So ∪ Se. In light of Exercises REF
and REF, we can conclude that x ∈ ∂S iff every neighborhood of x has at
least one point from each of S and Sc. It is worthwhile to further subdivide
the boundary into boundary isolated points and two types of boundary limit
points. We call x ∈ S a boundary isolated point of S if every neighborhood of
x contains at least one point in Sc and there exists a neighborhood of x that
has no other points of S. We call x ∈ S an included boundary limit point of S
if every neighborhood of x contains at least one point in Sc and at least one
point in S other than x itself. We call x ∈ Sc an excluded boundary limit point
of S if every neighborhood of x contains at least one point in S.

Thus, given a set S, we’ve described a way of neatly partitioning Ω into
five types of points based on various relationships with S. (SIDENOTE: To
convince yourself that this is a partition, look carefully at all the definitions,
using the characterizations of interior and exterior from Exercises REF and
REF.) Three types are inside S: interior points, boundary isolated points, and
included boundary limit points. The other two types are outside S: excluded
boundary limit points and exterior points.

6. Explain why So is the largest open subset of S and why S̄ is the smallest
closed set containing S.

7. Justify the following alternative characterizations of open and closed: S
is open iff S = So; S is closed iff S = S̄.

8. How do we know that ∂S is closed?

In light of Exercise REF and our partitioning scheme, we have a clear and
detailed characterization of open and closed sets. A set is open iff it has no
boundary isolated points or included boundary limit points; a set is closed iff
it has no excluded boundary limit points.

9. We call x ∈ S an isolated point of S if there exists a neighborhood of
x that has no other points of S. We’ve seen points of this type in the
boundary. When is an interior point isolated?

10. We call x a limit point of S if every neighborhood of x contains at least
one point in S other than x itself (which may or may not be in S). (SIDE-
NOTE: Notice that the interior can be partitioned into interior isolated
points and interior limit points.) Explain why the limit points are the
union of the interior limit points and the boundary limit points.

11. By our definition of topology, the full set Ω is open. Is it closed?

12. A set S is called dense in another set S′ if S′ ⊆ S̄. Show that S is dense in
the full set Ω iff every non-empty open set contains at least one member
of S.

A net in Ω converges to a point x ∈ Ω if for neighborhood M ∈ N(x), there
exists an αM such that α ≥ αM implies xn ∈ M . This x is called the limit of
(xn), and familiar limit notation is used in this context.

13. Explain why any net with finite cardinality has a limit.

14. Prove that a point is in the closure of S iff it is the limit of a net in S.

15. Show that if there exists a sequence in S that converges to x, then x
must be in S̄. Devise an example showing that a point can be in the
closure while no sequence converges to it. Thus in general, the relation-
ship between convergence and closure is not quite as strong if you’re only
considering sequences (i.e. nets with index set N). However, we’ll see in
Exercise REF a regularity condition on topological spaces that guarantees
that an analogue Exercise 14 holds for sequences.

16. Show that a net converges to a point iff all of its subnets converge to that
point.

17. A point x in a net {xα} is called a net limit point if for every for neigh-
borhood M ∈ N(x) and every index α there exists some β ≥ α such that
xβ ∈M . Show that x is a net limit point of {xα} iff it is the limit of some
subnet of {xα}.

18. If the topological space is also a complete lattice, then we define the limit
inferior (also called liminf ) and limit superior (limsup) by

lim inf xα := sup
α

inf
β≥α

xβ and lim supxα := inf
α

sup
β≥α

xβ

Show that lim inf xα ≤ lim supxα and that xα → x iff

x = lim inf xα = lim supxα

19. Let I be a directed set, and let (Ω, T ) be a topological space that is also a
vector space (DO I NEED it to be a TVS?). The set of all nets mapping
from I to Ω is a vector space (see Section REF). Show that limit is a
linear operator on this space. Assuming (Ω, T ) is a complete lattice, show
that liminf, and limsup are linear operators as well.

3 Bases

A is a collection of subsets B is called a base (or synthetic basis) if

• Its sets cover the space Ω. (SIDENOTE: A collection of sets S is said to
cover (or to “be a cover for”) a set X if every x ∈ X is in the union over
all S ∈ S.)

• Any pair-wise intersection from B can be expressed as a union of sets in
B.

While any collection of sets generates a topology, a base has a particularly nice
relationship to the topology it generates, as we will see.

20. Is every topology generated by some base?

Notice that the above definition makes no reference to a topology on the
space. The property of being a base is intrinsic to B and not relative to any
topology. On the other hand, we say that a collection B ⊆ T is a basis (or
analytic basis) for the topology T if every set in T can be expressed as a union
of sets from B. Crucially, the two concepts are related by the following fact.

Theorem 3.1. B is a base iff B is a basis for τ(B).

21. Prove Theorem 3.1.

Above, we’ve defined a number of aspects of topological spaces in terms of
neighborhoods. The following fact ties neighborhoods to basis sets.

Corollary 3.2. Let B be a basis for T. Then M is a neighborhood of x iff it
contains a B ∈ B that contains x.

A collection Bx ⊆ T is called a local basis (with respect to T) at x if for
every open set T containing x, there is some B ∈ Bx that is a subset of T .
(SIDENOTE: Trivially, the topology T is itself a local basis at every point.) It’s
easy to observe an analogue of Corollary 3.2 in this context: M is a neighborhood
of x iff it contains a B ∈ Bx that contains x. The following theorem clarifies
the relationship between the concepts of basis and local basis.

Theorem 3.3. B is a basis iff it is a local basis at every point.

22. Prove Theorem 3.3.

The basis concepts are central to tying topology to other fields of functional
analysis.

4 Continuous functions

Throughout this subsection, let f be a mapping from one topological space
to another. f is called an open map if the image of every open set in the
domain is an open set in the codomain. The “reversed” condition turns out
to be much more important: f is called continuous if the pre-image of every
open set in the codomain is an open set in the domain. (SIDENOTE: This
characterization may not seem meaningful, but it turns out to be equivalent to
the usual definitions of continuity in familiar contexts.)

When checking that f is an open map, it is sufficient to check any base of
the domain’s topology. Likewise, when checking for continuity, it is sufficient
to check any base of the codomain’s topology.

A nice thing about continuous functions is that limit can “pass through”
them: lim f(xn) = f(limxn).

Theorem 4.1. If f is a continuous mapping from (Ω,T) to another topological
space, then xn → x implies f(xn)→ f(x).

23. Prove Theorem 4.1.

Any f for which lim f(xn) = f(limxn) holds for all convergent sequences
is called sequentially continuous. In general, a function can be sequentially
continuous without also being continuous. Sequential spaces are topological
spaces for which continuity and sequential continuity are equivalent. Every
first-countable space is sequential.

sequential spaces - sequences determine the topology - what exactly does
that mean? IN CERTAIN types of sequential spaces (Frechet-Urysohn spaces),
the CONVERSE TO [limit of sequence implies limit point] is true as well. that
is, - IF x is a limit point for S, then there exists a sequence in S that converges
to x.

A continuous function from a separable space to a Hausdorff space is
determined by its values on a dense subset. AS A RESULT, the set of real-
valued functions on a separable space has cardinality no greater than ℵ1. (why?)

If f maps from Ω to a topological space, the initial topology on Ω with respect
to f is the coarsest topology on Ω such that f is continuous. It is exactly the
topology generated by the pre-images of all the open sets in the codomain. The
initial topology with respect to a collection of functions is the coarsest topology
for which all of them are continuous.

4.1 Homeomorphisms

topological space isomorphisms

Make reference to category theory here

5 Cataloguing topological spaces

5.1 Separation

Two points in Ω are topologically indistinguishable if they have the same neigh-
borhood system (SIDENOTE: Otherwise, they are topologically distinguish-
able.); the topology is blind to any differences between such points. There
are a number of important regularity conditions relating to how well a topology
“separates” things.

Given a topological space (Ω, T ) and a pair of items, each of which is either
a point in Ω or a subset of Ω, we say that the two items are

• separated if each has a neighborhood that doesn’t contain the other,

• separated by neighborhoods if they have a disjoint pair of neighborhoods.

Clearly separation by neighborhoods is a stronger condition than separation.

condition name defining axiom
R0 (symmetric) any pair of topologically distinguishable points are separated (SIDENOTE: How could this ever fail for two points with different neighborhood systems? See the Sierpinski space for a simple example. R0 says that if one point has a neighborhood not containing another point, then that other point should also have a neighborhood not containing the first.)
R1 (preregular) any pair of topologically distinguishable points are separated by neighborhoods
R2 (regular) any closed set is separated by neighborhoods from any point outside the set
R3 (normal) any two disjoint closed sets are separated by neighborhoods
R4 (completely normal) any two separated sets are separated by neighborhoods
R5 (perfectly normal) any closed set is a countable intersection of open sets

It can be shown that these regularity conditions are (strictly) increasing in
strength:

R5 ⇒ R4 ⇒ R3 ⇒ R2 ⇒ R1 ⇒ R0

They relate to how well a topology separates its topologically distinguishable
points, but often we’re interested in how well it separates all of its points.

A Kolmogorov space (or T0-space) is a topological space in which all points
are topologically distinguishable. In fact, we can construct a Kolmogorov space
from any topological space using the fact that topological indistinguishability
is an equivalence relation. By condensing the points into their equivalence
classes and defining the neighborhood system of each equivalence class by the
(common) neighborhood system of its original points, we get a Kolmogorov
space, which is called the Kolmogorov quotient of the original topological space.

By adding axiom T0 to any of the above regularity axioms, we get a space
in which all points are separated in the specified ways. There is a convenient
naming scheme for such spaces:

Tk+1 := T0 +Rk

A T2-space (i.e. a preregular Kolmogorov space) is also called a Hausdorff
space. In other words, in a Hausdorff space every pair of points is separated by
neighborhoods. Because the Rk conditions increase in strength, so do the Tk
conditions.

The defining conditions of the above spaces are among the separation ax-
ioms, a classification scheme for topological spaces. This detailed cataloguing
allows us to keep track of exactly how much separation structure is necessary
and/or sufficient for various other topological properties that we’ll study.

24. Show that a topological space is Hausdorff iff every net converges to at
most one point.

25. Does the result of Exercise 24 still hold if net is replaced with sequence?

In a Hausdorff space, each point is the unique intersection of its neighborhood
basis. (or neighborhood system?) The neighborhood basis is a directed set
because it is closed under intersection. - but this is supposed to index points...
do we take one point from each neighborhood?

does preservation of net convergence provide an equivalent definition of con-
tinuous functions?

5.2 Size

There are a number of ways of quantifying the size of a topological space. Some
of the relationships between these notions of size will be explored in the exercises.

5.3 Separability

Does the cardinality of a dense subset constrain the cardinality of Ω? In general,
no. Consider the topological space comprising some set Ω and its trivial topology
{∅,Ω}. Any singleton of an element in Ω is a dense subset. So regardless of
the size or nature of Ω, there is a topology for which Ω has a dense subset of
cardinality at most 1. However, for Hausdorff spaces, dense subsets do tell us
something about the cardinality.

1.1* Suppose a Hausdorff space has a dense subset of cardinality a. Show
that the cardinality of the full space is no greater than 22a

.

A set in a topological space is separable if it contains a countable dense
subset. In Section 5.1, we defined separated and separated by neighborhoods.
Separablility is a different concept, despite the similarity of the terms. The
topological space itself is called separable if the full set is separable.

26. Is the union of countably many separable subsets also separable?

27. Show that every open subset of a separable space is separable. However, its
not the case that every subset of a separable space is necessarily separable
Devise an example to prove this.

28. Suppose f is a continuous function with a separable domain. Show that
its range is also separable.

COMBINE this with a compactness result - Show that separability is pre-
served by continuous mappings. Show also that compactness is preserved by
continuous mappings.

The convenience of separability will become increasingly apparent as we
continue our study of functional analysis.

5.4 Compactness

A number of important classifications of the size of a set are related to the
properties of its open covers. An open cover is a cover whose sets are all open.
A set in a topological space is called

• Lindelöf if every open cover of the set contains a countable subcover,

• compact if every open cover of the set contains a finite subcover,

• σ-compact if the set has a countable partition into compact subsets.

It is immediate that the conditions here are listed from strongest to weakest.
Similar classifications are related to the ability of its nets to “escape.” A set in
a topological space is called

• net compact if every net in the set has a convergent subnet,

• sequentially compact if every sequence in the set has a convergent subse-
quence.

These terms are applied to the topological space itself if the full set satisfies the
given condition.

EXERCISE: Does net compact imply sequentially compact? NO - given a
sequence, its subsequences are all subnets, but its subnets aren’t necessarily
subsequences! example at link:

EProposition 5.1. Let (Ω, T ) be a Hausdorff space. Then a subset is compact
iff it is net compact.

See Theorem 5.2 for a sufficient condition for the equivalence of compactness
and sequential compactness.

MOVE THE FOLLOWING two facts TO metric spaces document.

ETheorem 5.2 (The Bolzano-Weierstrass Theorem). In any metric space, a
subset is compact iff it is sequentially compact.

ETheorem 5.3 (The Heine-Borel Theorem). In any metric space, a subset is
compact iff it is both complete and totally bounded.

Show that a net {xα} in a metric space converges to x iff d(xα, x) → 0.
(INTERPRET d(xα, x) in terms of a net as well - this is the right way of
thinking about continuous limits of real numbers, i think - nets with the usual
ordering on the reals, making them a directed set.)

Suppose f is a continuous function with a compact domain. Show that its
range is also compact.

A set is called relatively compact if its closure is compact. - make up an
exercise so that i can introduce this term.

A nice property of compactness is that it is preserved by continuous
mappings. If S is compact and f is a continuous function, then the image f(S)
is a compact subset of the codomain. In particular, if f is real-valued has has
a compact domain, then its range is a compact subset of R. It can be shown
that every compact subset of R has a greatest and a least element, so f attains
a maximum and minimum. (SIDENOTE: This is a more general statement of
the Extreme Value Theorem.)

MAKING a topological space into a compact space: “The methods of com-
pactification are various, but each is a way of controlling points from ‘going off
to infinity” by in some way adding “points at infinity” or preventing such an
“escape’.”
Is this related to “compactly-generated spaces”?

also do

σ-compact

and locally compact - although this one is about the local properties of a
space rather than the spaces overall size.

First and second countability

Recall from Section REF, that the span of a set of vectors is the “smallest” vec-
tor space containing them all; it is exactly the set of their linear combinations.
Typically there are typically (infinitely) many subsets of vectors that span the
whole space. We characterize the size of a vector space by its dimension, the
cardinality of the smallest spanning sets. Similar reasoning is useful for topo-
logical spaces. However, extending a collection to its “smallest” topology is not
as straightforward except for special types of collections.

Basis concepts provide some useful ways of characterizing the sizes of topo-
logical spaces. A topological space is first-countable if every point has a count-
able local basis.

1.2* A consequence of Exercise REF is that if a set is closed it must contain
all its sequences’ limits. One might wonder whether a converse is
true: if a set contains all its sequences’ limits, then it is closed. This
converse is actually not true in general. Prove that it is true for first-
countable spaces. (Thus, any set in a first-countable space is closed
iff it contains all its sequences’ limits.)

1.3 In Exercise REF, we saw that convergent sequences in a Hausdorff
spaces must have unique limits. For first-countable spaces, show that
the converse is true as well. (Thus, if a topological space is first-
countable, then it is Hausdorff iff its convergent sequences have unique
limits.)

1.4 Suppose a first-countable Hausdorff space has a dense subset of car-
dinality a. Show that the cardinality of the full space is no greater
than 2a. Compare this to Exercise 1.1.

A topological space is second-countable if its topology has a countable basis.
Because the basis is a local basis at every point, second-countable implies first-
countable.

1.5 Devise an example of a topological space that is first-countable but
not second-countable.

1.6 Prove that every second-countable space is separable.

A collection of subsets is locally finite if every point has some neighborhood
that intersects only finitely many of the collection’s sets. A collection is called
countably locally finite if it is a union of countably many locally finite collections.
The importance of a basis being countably locally finite will become clear in
Theorem REF.

IN PAVINGS section make sure to DEFINE a countably-generated space -
make it clear that this concept applies to all these “generated” spaces.

EXERCISE: A topological space is second countable iff it is countably gen-
erated - second countable implies countably generated is automatic - for the
other direction, take any countable collection. the topology it generates is the
same as the topology generated by itself along with its pairwise intersections,
which are together a countable collection as well.

6 Topological completeness
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